You are what you eat... Eat healthy.

Cancer Fighting Food References Section II

  1. Impact of Soy Foods on the Development of Breast Cancer and the Prognosis of Breast Cancer Patients. Messina, Mark. [ed.] Harald Walach. Poznan: S. Karger AG, Basel, April 12, 2016, Complementary Medicine Research, Vol. 23, pp. 75-80. DOI: 10.1159/000444735; https://www.karger.com/Article/FullText/444735. ISSN: 2504-2092; PMID: 27161216.
  2. Possibility of Breast Cancer Prevention: Use of Soy Isoflavones and Fermented Soy Beverage Produced Using Probiotics. Takagi, Akimitsu, Kano, Mitsuyoshi and Kaga, Chiaki. [ed.] Mark L. Richter. 5, Lawrence: MDPI AG, May 13, 2015, International Journal of Molecular Sciences, Vol. 16, pp. 10907-10920. DOI: 10.3390/ijms160510907; http://www.mdpi.com/1422-0067/16/5/10907. eISSN: 1422-0067; PMID: 25984609.
  3. Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Itsumi, Momoe, et al., et al. [ed.] Yusuke Nakamura. 7, Chicago: John Wiley & Sons, Inc.: Japanese Cancer Association, July 2016, Cancer Science, Vol. 107, pp. 1022-1028. DOI: 10.1111/cas.12948; http://onlinelibrary.wiley.com/doi/10.1111/cas.12948/abstract. eISSN: 1349-7006; PMID: 27088761.
  4. Reduced isoflavone metabolites formed by the human gut microflora suppress growth but do not affect DNA integrity of human prostate cancer cells. Raschke, Marian, Wähälä, Kristiina and Pool-Zobel, Beatrice L. [ed.] Philip C. Calder. Southampton: Cambridge University Press, March 17, 2006, British Journal of Nutrition, Vol. 96, pp. 426-434. ISSN: 0007-1145; PMID: 16925846.
  5. Efficacy and Safety of Short-Term Genistein Intervention in Patients with Localized Prostate Cancer Prior to Radical Prostatectomy: A Randomized, Placebo-Controlled, Double-Blind Phase 2 Clinical Trial. Lazarevic, Bato, et al., et al. [ed.] Leonard A. Cohen. 6, Valhalla: Taylor and Francis Group, LLC, June 29, 2011, Nutrition and Cancer, Vol. 63, pp. 889-898. DOI: 10.1080/01635581.2011.582221; http://www.tandfonline.com/doi/abs/10.1080/01635581.2011.582221. ISSN: 0163-5581; PMID: 21714686.
  6. The potential health effects of dietary phytoestrogens. Rietjens, Ivonne M.C.M., Louisse, Jochem and Beekmann, Karsten. [ed.] J.C. (Ian) McGrath. 11, Glasgow: John Wiley & Sons, Inc.: The British Pharmacological Society, June 2017, British Journal of Pharmacology, Vol. 174, pp. 1263-1280. DOI: 10.1111/bph.13622; http://onlinelibrary.wiley.com/doi/10.1111/bph.13622/abstract. eISSN: 1476-5381; PMID: 27723080.
  7. Consumption of Soy Isoflavone Enriched Bread in Men with Prostate Cancer Is Associated with Reduced Proinflammatory Cytokines and Immunosuppressive Cells. Lesinski, Gregory B., et al., et al. [ed.] Scott M. Lippman. 11, Philadelphia: American Association for Cancer Research, November 2015, Cancer Prevention Research, Vol. 8, pp. 1036-1044. DOI: 10.1158/1940-6207.CAPR-14-0464; http://cancerpreventionresearch.aacrjournals.org/content/8/11/1036. ISSN: 1940-6207; PMID: 26276751.
  8. Effects of a diet rich in phytoestrogens on prostate-specific antigen and sex hormones in men diagnosed with prostate cancer. Dalais, Fabien S., et al., et al. [ed.] Alan Partin. 3, Baltimore: Elsevier Inc., September 2004, Urology, Vol. 64, pp. 510-515. DOI: 10.1016/j.urology.2004.04.009; http://www.goldjournal.net/article/S0090-4295(04)00436-4/fulltext. ISSN: 0090-4295; PMID: 15351581.
  9. Soy milk digestion extract inhibits progression of prostate cancer cell growth via regulation of prostate cancer specific antigen and cell cycle-regulatory genes in human LNCaP cancer cells. Kang, Nam Hee, et al., et al. [ed.] Demetrios A. Spandidos. 2, Athens: Spandidos Publications, August 2016, Molecular Medicine Reports, Vol. 14, pp. 1809-1816. DOI: 10.3892/mmr.2016.5408; https://www.spandidos-publications.com/10.3892/mmr.2016.5408. ISSN: 1791-2997; PMID: 27315510.
  10. Effects of a High Dose, Aglycone-Rich Soy Extract on Prostate-Specific Antigen and Serum Isoflavone Concentrations in Men With Localized Prostate Cancer. White, Ralph W. deVere, et al., et al. [ed.] Leonard A. Cohen. 8, Valhalla: Taylor and Francis Group, LLC, November 6, 2010, Nutrition and Cancer, Vol. 62, pp. 1036-1043. DOI: 10.1080/01635581.2010.492085; http://www.tandfonline.com/doi/abs/10.1080/01635581.2010.492085. ISSN: 0163-5581; PMID: 21058191.
  11. Oral isoflavone supplementation on endometrial thickness: a meta-analysis of randomized placebo-controlled trials. Liu, Jie, et al., et al. [ed.] Andrei V. Gudkov and Mikhail V. Blagosklonny. 14, Buffalo: Impact Journals, LLC, April 5, 2016, Oncotarget, Vol. 7, pp. 17369-17379. DOI: 10.18632/oncotarget.7959; http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path[]=7959&path[]=23353. eISSN: 1949-2553; PMID: 26967050.
  12. Meta-analysis of Soy Consumption and Gastrointestinal Cancer Risk. Lu, Demin, et al., et al. [ed.] Philip Campbell. 1, London: Macmillan Publishers Limited, part of Springer Nature, June 22, 2017, Scientific Reports, Vol. 7, p. Article number: 4048. DOI: 10.1038/s41598-017-03692-y; http://www.nature.com/articles/s41598-017-03692-y. ISSN: 2045-2322; PMID: 28642459.
  13. Soy and isoflavone consumption and risk of gastrointestinal cancer: a systematic review and meta-analysis. Tse, Genevieve and Eslick, Guy D. [ed.] Ian Rowland. 1, Reading: Springer Berlin Heidelberg, February 2016, European Journal of Nutrition, Vol. 55, pp. 63-73. DOI: 10.1007/s00394-014-0824-7; https://link.springer.com/article/10.1007%2Fs00394-014-0824-7. ISSN: 1436-6207; PMID: 25547973.
  14. Effects of antidepressants and soybean association in depressive menopausal women. Estrella, Rose E. Nina, et al., et al. [ed.] Aleksander P. Mazurek. 2, Warsaw: Polish Pharmaceutical Society, March-April 2014, Acta Poloniae Pharmaceutica - Drug Research, Vol. 71, pp. 323-327. ISSN: 0001-6837; PMID: 25272653.
  15. Soy Protein Supplementation Reduces Clinical Indices in Type 2 Diabetes and Metabolic Syndrome. Zhang, Xi-Mei, Zhang, Yun-Bo and Chi, Mei-Hua. [ed.] Jung-Won Park. 3, Seoul: Yonsei University College of Medicine, May 2016, Yonsei Medical Journal, Vol. 57, pp. 681-689. DOI: 10.3349/ymj.2016.57.3.681; https://synapse.koreamed.org/DOIx.php?id=10.3349/ymj.2016.57.3.681. ISSN: 0513-5796; PMID: 26996569.
  16. Soy isoflavone supplementation could reduce body weight and improve glucose metabolism in non-Asian postmenopausal women--A meta-analysis. Zhang, Yun-Bo, et al., et al. [ed.] Michael M. Meguid. 1, Syracuse: Elsevier Inc., January 2013, Nutrition, Vol. 29, pp. 8-14. DOI: 10.1016/j.nut.2012.03.019; http://www.nutritionjrnl.com/article/S0899-9007(12)00143-8/fulltext. ISSN: 0899-9007; PMID: 22858192.
  17. Effect of 6 months of exercise and isoflavone supplementation on clinical cardiovascular risk factors in obese postmenopausal women: a randomized, double-blind study. Aubertin-Leheudre, Mylène, et al., et al. [ed.] Isaac Schiff. 4, Boston: Wolters Kluwer Health, Inc.; The North American Menopause Society , July/August 2007, Menopause, Vol. 14, pp. 624-629. DOI: 10.1097/gme.0b013e31802e426b; http://journals.lww.com/menopausejournal/pages/articleviewer.aspx?year=2007&issue=14040&article=00006&type=abstract. ISSN: 1072-3714; PMID: 17290158.
  18. A Systematic Review of the Efficacy of Bioactive Compounds in Cardiovascular Disease: Phenolic Compounds. Rangel-Huerta, Oscar D., et al., et al. [ed.] Peter Howe and Jonathan Buckley. 7, Callaghan; Adelaide: MDPI AG, June 29, 2015, Nutrients, Vol. 7, pp. 5177-5216. DOI: 10.3390/nu7075177; http://www.mdpi.com/2072-6643/7/7/5177. ISSN: 2072-6643; PMID: 26132993.
  19. Probiotic Soy Product Supplemented with Isoflavones Improves the Lipid Profile of Moderately Hypercholesterolemic Men: A Randomized Controlled Trial. Cavallini, Daniela Cardoso Umbelino, et al., et al. [ed.] Peter Howe and Jonathan Buckley. 1, Callaghan; Adelaide: MDPI AG, January 2016, Nutrients, Vol. 8, p. 52. DOI: 10.3390/nu8010052; http://www.mdpi.com/2072-6643/8/1/52. ISSN: 2072-6643; PMID: 26797632.
  20. Efficacy of phytoestrogens for menopausal symptoms: a meta-analysis and systematic review. Chen, M-n., Lin, C-c. and Liu, C-f. [ed.] Anna Fenton and Nick Panay. 2, Christchurch; London: Informa UK Limited: Taylor & Francis, March 2015, Climacteric, Vol. 18, pp. 260-269. DOI: 10.3109/13697137.2014.966241; http://www.tandfonline.com/doi/full/10.3109/13697137.2014.966241. ISSN: 1369-7137; PMID: 25263312.
  21. Soy isoflavones and glucose metabolism in menopausal women: A systematic review and meta-analysis of randomized controlled trials. Fang, Ke, et al., et al. [ed.] Hans-Ulrich Humpf. 7, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, July 2016, Molecular Nutrition & Food Research, Vol. 60, pp. 1602-1614. DOI: 10.1002/mnfr.201501024; http://onlinelibrary.wiley.com/doi/10.1002/mnfr.201501024/abstract. ISSN: 1613-4133; PMID: 27004555.
  22. Effects of soy protein containing isoflavones in patients with chronic kidney disease: A systematic review and meta-analysis. Jing, Zhou and Wei-Jie, Yuan. [ed.] Nicolaas E.P. Deutz. 1, College Station: Elsevier Ltd., February 2016, Clinical Nutrition, Vol. 35, pp. 117-124. DOI: 10.1016/j.clnu.2015.03.012; http://www.clinicalnutritionjournal.com/article/S0261-5614(15)00087-4/fulltext. ISSN: 0261-5614; PMID: 25882339.
  23. Effect of soy isoflavone extract supplements on bone mineral density in menopausal women: meta-analysis of randomized controlled trials. Taku, Kyoko, et al., et al. [ed.] Mark Wahlqvist. 1, Taipei: HEC Press, 2010, Asia Pacific Journal of Clinical Nutrition, Vol. 19, pp. 33-42. ISSN: 0964-7058; PMID: 20199985.
  24. Topical administration of isoflavones for treatment of vaginal symptoms in postmenopausal women: A systematic review of randomised controlled trials. Ghazanfarpour, M., et al., et al. [ed.] Ian M. Symonds. 8, Adelaide: Informa UK Limited: Taylor & Francis, February 24, 2015, Journal of Obstetrics and Gynaecology, Vol. 35, pp. 783-787. DOI: 10.3109/01443615.2015.1011104; http://www.tandfonline.com/doi/full/10.3109/01443615.2015.1011104. ISSN: 0144-3615; PMID: 25710207.
  25. The impact of equol-producing status in modifying the effect of soya isoflavones on risk factors for CHD: a systematic review of randomised controlled trials. Birru, Rahel L., et al., et al. [ed.] G.C. Burdge. e30, Southampton: Cambridge University Press, July 19, 2016, Journal of Nutritional Science, Vol. 5. DOI: 10.1017/jns.2016.18; https://www.cambridge.org/core/journals/journal-of-nutritional-science/article/impact-of-equolproducing-status-in-modifying-the-effect-of-soya-isoflavones-on-risk-factors-for-chd-a-systematic-review-of-randomised-controlled-trials/7244F0A52B03F2FF236B2C726880D017. ISSN: 2048-6790; PMID: 27547393.
  26. Influence of Isoflavone Intake and Equol-producing Intestinal Flora on Prostate Cancer Risk. Sugiyama, Yukiko, et al., et al. [ed.] Malcolm A. Moore. 1, Goyang-si Gyeonggi-do : Asian Pacific Organization for Cancer Prevention, January 2013, Asian Pacific Journal of Cancer Prevention, Vol. 14, pp. 1-4. DOI: 10.7314/APJCP.2013.14.1.1; http://journal.waocp.org/?sid=Entrez:PubMed&id=pmid:23534704&key=2013.14.1.1. ISSN: 1513-7368; PMID: 23534704.
  27. Soy proteins and isoflavones reduce interleukin-6 but not serum lipids in older women: a randomized controlled trial. Mangano, Kelsey M., et al., et al. [ed.] Bruce A. Watkins. 12, New York : Elsevier Inc., December 2015, Nutrition Research, Vol. 33, pp. 1026-1033. DOI: 10.1016/j.nutres.2013.08.009; http://www.sciencedirect.com/science/article/pii/S0271531713001954?via%3Dihub. ISSN: 0271-5317; PMID: 24267042.
  28. Soybean greatly reduces valproic acid plasma concentrations: A food-drug interaction study. Marahatta, Anu, et al., et al. [ed.] Philip Campbell. London : Macmillan Publishers Limited, part of Springer Nature, March 12, 2014, Scientific Reports, Vol. 4, p. Article number: 4362. DOI: 10.1038/srep04362; http://www.nature.com/articles/srep04362. ISSN: 2045-2322; PMID: 24618639.
  29. Ravindran, P. N. Turmeric - The Golden Spice of Life. [ed.] P. N. Ravindran, K. Nirmal Babu and K. Sivaraman. Turmeric: The Genus Curcuma. Boca Raton: CRC Press: Taylor & Francis Group, LLC, 2007, 1, pp. 1-14. ISBN-13: 978-0-8493-7034-2.
  30. Curcumin―The Paradigm of a Multi-Target Natural Compound with Applications in Cancer Prevention and Treatment. Teiten, Marie-Hélène, et al., et al. [ed.] Florian Lang. 1, Basel: MDPI - Open Access Publishing, January 21, 2010, Toxins, Vol. 2, pp. 128-162. DOI: 10.3390/toxins2010128; http://www.mdpi.com/2072-6651/2/1/128. ISSN: 2072-6651; PMID: 22069551.
  31. Aggarwal, Bharat B., et al., et al. Curcumin — Biological and Medicinal Properties. [ed.] P. N. Ravindran, K. Nirmal Babu and K. Sivaraman. Turmeric: The Genus Curcuma. Boca Raton: CRC Press: Taylor & Francis Group, 2007, 10, pp. 298-348. ISBN-13: 978-0-8493-7034-2.
  32. Curcumin Suppresses the Paclitaxel-Induced Nuclear Factor-KB Pathway in Breast Cancer Cells and Inhibits Lung Metastasis of Human Breast Cancer in Nude Mice. Aggarwal, Bharat B., et al., et al. [ed.] William Neil Hait. 20, Boston: American Association for Cancer Research, October 15, 2005, Clinical Cancer Research, Vol. 11, pp. 7490-7498. DOI: 10.1158/1078-0432.CCR-05-1192; http://clincancerres.aacrjournals.org/content/11/20/7490. ISSN: 1078-0432; PMID: 16243823.
  33. Curcumin Inhibits Carcinogen and Nicotine-Induced Mammalian Target of Rapamycin Pathway Activation in Head and Neck Squamous Cell Carcinoma. Clark, Cheryl A., et al., et al. [ed.] Scott M. Lippman. 12, Philadelphia: American Association for Cancer Research, December 2010, Cancer Prevention Research, Vol. 3, pp. 1586-1595. DOI: 10.1158/1940-6207.CAPR-09-0244; http://cancerpreventionresearch.aacrjournals.org/content/3/12/1586. ISSN: 1940-6215; PMID: 20851953.
  34. Phase I Clinical Trial of Curcumin, a Chemopreventive Agent, in Patients with High-risk or Pre-malignant Lesions. Cheng, Ann-Lii, et al., et al. [ed.] Masahide Kuroki. 4b, Fukuoka: The International Institute of Anticancer Research, July-August 2001, Anticancer Research, Vol. 21, pp. 2895-2900. ISSN: 0250-7005; PMID: 11712783.
  35. Curcumin inhibits bladder cancer progression via regulation of β-catenin expression. Shi, Jing, et al., et al. [ed.] Torgny Stigbrand. 7, Umeå: SAGE Publications Ltd.; International Society of Oncology and BioMarkers (ISOBM), July 1, 2017, Tumor Biology, Vol. 39. DOI: 10.1177/1010428317702548; http://journals.sagepub.com/doi/10.1177/1010428317702548. ISSN: 1010-4283; PMID: 28705118.
  36. Potential of the Dietary Antioxidants Resveratrol and Curcumin in Prevention and Treatment of Hematologic Malignancies. Kelkel, Mareike, et al., et al. [ed.] Derek J. McPhee. 10, Emeryville: MDPI AG, October 12, 2010, Molecules, Vol. 15, pp. 7035-7074. DOI: 10.3390/molecules15107035; http://www.mdpi.com/1420-3049/15/10/7035. ISSN: 1420-3049. PMID: 20944521.
  37. Bar-Sela, G. and Schaffer, M. An Evidence-Based Perspective of Curcuma Longa (Turmeric) for Cancer Patients. [ed.] William C. S. Cho. Evidence-Based Anticancer Materia Medica. Dordrecht: Springer Science+Business Media B.V., 2011, 11, pp. 225-244. ISBN: 978-94-007-0525-8.
  38. Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Golombick, T, Diamond, T.H., Manoharan, A., Ramakrishna, R. [ed.] Carlo Brugnara. 5, Boston: Wiley Periodicals, Inc., May 2012, American Journal of Hematology, Vol. 87, pp. 455-460. DOI: 10.1002/ajh.23159; http://onlinelibrary.wiley.com/doi/10.1002/ajh.23159/abstract. eISSN: 1096-8652; PMID: 22473809.
  39. Curcumin (diferuloylmethane) inhibits constitutive NF-kB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Shishodia, Shishir, et al., et al. [ed.] Sam J. Enna. 5, Kansas City: Elsevier B.V., September 1, 2005, Biochemical Pharmacology, Vol. 70, pp. 700-713. DOI: 10.1016/j.bcp.2005.04.043; http://www.sciencedirect.com/science/article/pii/S0006295205002418. ISSN: 0006-2952; PMID: 16023083.
  40. Intratumoral Concentrations and Effects of Orally Administered Micellar Curcuminoids in Glioblastoma Patients. Dützmann, Stephan, et al., et al. [ed.] Leonard A. Cohen. 6, Valhalla: Taylor and Francis Group, LLC, June 24, 2016, Nutrition and Cancer, Vol. 68, pp. 943-948. DOI: 10.1080/01635581.2016.1187281; http://www.tandfonline.com/doi/full/10.1080/01635581.2016.1187281. ISSN: 0163-5581; PMID: 27340742.
  41. Targeting Inflammation-Induced Obesity and Metabolic Diseases by Curcumin and Other Nutraceuticals. Aggarwal, Bharat B. [ed.] Robert J. Cousins. Gainesville: Annual Reviews, August 2010, Annual Review of Nutrition, Vol. 30, pp. 173-199. DOI: 10.1146/annurev.nutr.012809.104755; http://www.annualreviews.org/doi/abs/10.1146/annurev.nutr.012809.104755. ISSN: 0199-9885; PMID: 20420526.
  42. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Bayet-Robert, Mathilde, et al., et al. [ed.] Wafik S. El-Deiry. 1, Hershey: Landes Bioscience, January 1, 2010, Cancer Biology & Therapy, Vol. 9, pp. 8-14. DOI: 10.4161/cbt.9.1.10392; http://www.tandfonline.com/doi/abs/10.4161/cbt.9.1.10392. ISSN: 1538-4047; PMID: 19901561.
  43. Anand, Preetha, Kunnumakkara, Ajaikumar B. and Aggarwal, Bharat B. Curcumin: The Biochemistry Behind Its Anticancer Effects. [ed.] Cesar G. Fraga. Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology. Hoboken: John Wiley & Sons, Inc., 2010, 16, pp. 361-400. ISBN: 978-0-470-28721-7.
  44. Pharmacodynamic and Pharmacokinetic Study of Oral Curcuma Extract in Patients with Colorectal Cancer. Sharma, Ricky A., et al., et al. [ed.] John Mendelsohn. 7, Houston: American Association for Cancer Research, July 2001, Clinical Cancer Research, Vol. 7, pp. 1894-1900. ISSN: 1078-0432; PMID: 11448902.
  45. Phase IIa Clinical Trial of Curcumin for the Prevention of Colorectal Neoplasia. Carroll, Robert E., et al., et al. [ed.] Scott M. Lippman. 3, Philadelphia: American Association for Cancer Research, March 2011, Cancer Prevention Research, Vol. 4, pp. 354-364. DOI: 10.1158/1940-6207.CAPR-10-0098; http://cancerpreventionresearch.aacrjournals.org/content/4/3/354. ISSN: 1940-6207; PMID: 21372035.
  46. Curcumin Treatment Suppresses IKKβ Kinase Activity of Salivary Cells of Patients with Head and Neck Cancer: A Pilot Study. Kim, Suejung G., et al., et al. [ed.] Kenneth C. Anderson. 18, Philadelphia: American Association for Cancer Research, September 15, 2011, Clinical Cancer Research, Vol. 17, pp. 5953-5961. DOI: 10.1158/1078-0432.CCR-11-1272; http://clincancerres.aacrjournals.org/content/17/18/5953. ISSN: 1078-0432; PMID: 21821700.
  47. Curcumin and cancer: An ''old-age" disease with an ''age-old" solution. Anand, Preetha, et al., et al. [ed.] Manfred Schwab. 1, Heidelberg: Elsevier Ireland Ltd., August 18, 2008, Cancer Letters, Vol. 267, pp. 133-164. DOI: 10.1016/j.canlet.2008.03.025; http://linkinghub.elsevier.com/retrieve/pii/S0304383508002310. ISSN: 0304-3835; PMID: 18462866.
  48. A Controlled Clinical Study between Hepatic Arterial Infusion with Embolized Curcuma Aromatic Oil and Chemical Drugs in Treating Primary Liver Cancer. Cheng, Jian-hua, et al., et al. [ed.] Chen Ke-ji. 2, Beijing: Chinese Association of Traditional and Western Medicine, China Academy of Chinese Medical Sciences, June 1, 2001, Chinese Journal of Integrated Traditional and Western Medicine, Vol. 7, p. 141. ISSN: 1006-6497; PMID: 12577327.
  49. Reversal of aflatoxin induced liver damage by turmeric and curcumin. Soni, K.B., Rajan, A., Kuttan, R. [ed.] Manfred Schwab. 2, Heidelberg: Elsevier Ireland Ltd., September 30, 1992, Cancer Letters, Vol. 66. DOI: 10.1016/0304-3835(92)90223-I; http://www.cancerletters.info/article/0304-3835(92)90223-I/abstract. ISSN: 0304-3835; PMID: 1394115.
  50. Prasad, Sahdeo and Aggarwal, Bharat B. Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine. [ed.] Iris F.F. Benzie and Sissi Wachtel-Galor. Herbal Medicine: Biomolecular and Clinical Aspects. 2. Boca Raton: CRC Press: Taylor and Francis Group, LLC, 2011, 13, pp. 263-288. ISBN: 978-1-4398-0713-2.
  51. Effect of turmeric oil and turmeric oleoresin on cytogenetic damage in patients suffering from oral submucous fibrosis. Hastak, K., Lubri, N., Jakhi, S.D., More, C., John, A., Ghaisas, S.D., Bhide, S.V. 2, s.l.: Elsevier Ireland Ltd., June 24, 1997, Cancer Letters, Vol. 116, pp. 265-269. DOI: 10.1016/S0304-3835(97)00205-X; http://www.cancerletters.info/article/S0304-3835(97)00205-X/abstract. ISSN: 0304-3835; PMID: 9215873.
  52. Modulation of inflammatory signaling pathways by phytochemicals in ovarian cancer. Kim, Mi-Kyung, et al., et al. [ed.] Giuditta Perozzi, et al., et al. 2, Rome; Lausanne; Utrecht: Springer-Verlag, May 2011, Genes & Nutrition, Vol. 6, pp. 109-115. DOI: 10.1007/s12263-011-0209-y; http://link.springer.com/article/10.1007%2Fs12263-011-0209-y. ISSN: 1555-8932; PMCID: PMC3092902.
  53. Phase II Trial of Curcumin in Patients with Advanced Pancreatic Cancer. Dhillon, Navneet, et al., et al. [ed.] Kenneth C. Anderson. 14, Philadelphia: American Association for Cancer Research, July 15, 2008, Clinical Cancer Research, Vol. 14, pp. 4491-4499. DOI: 10.1158/1078-0432.CCR-08-0024; http://clincancerres.aacrjournals.org/content/14/14/4491. ISSN: 1078-0432; PMID: 18628464.
  54. A Pilot Clinical Trial of Radioprotective Effects of Curcumin Supplementation in Patients with Prostate Cancer. Jalal Hejazi1, Reza Rastmanesh, et al., et al. [ed.] Sudhakar Akul Yakkanti. 10, Omaha: OMICS Publishing Group, October 9, 2013, Journal of Cancer Science & Therapy, Vol. 5, pp. 320-324. DOI: 10.4172/1948-5956.1000223; http://omicsonline.org/vitamin-c-and-k-combination-causes-enhanced-anticancer-activity-against-rt-bladder-cancer-cells-1948-5956.1000223.php?aid=19597. ISSN: 1948-5956.
  55. A double-blind, placebo-controlled randomised trial evaluating the effect of a polyphenol-rich whole food supplement on PSA progression in men with prostate cancer--the UK NCRN Pomi-T study. Thomas, R., et al., et al. [ed.] Stephen J. Freedland. 2, Durham: Nature Publishing Group, June 2014, Prostate Cancer and Prostatic Disease, Vol. 17, pp. 180-186. DOI: 10.1038/pcan.2014.6; http://www.nature.com/pcan/journal/v17/n2/full/pcan20146a.html. ISSN: 1365-7852; PMID: 24614693.
  56. Adjuvant Therapy with Bioavailability-Boosted Curcuminoids Suppresses Systemic Inflammation and Improves Quality of Life in Patients with Solid Tumors: A Randomized Double-Blind Placebo-Controlled Trial. Panahi, Yunes, et al., et al. [ed.] Elizabeth M. Williamson, et al., et al. 10, Reading; Naples; Seoul; Charleston: John Wiley & Sons, Ltd., October 2014, Phytotherapy Research, Vol. 28, pp. 1461-1467. DOI: 10.1002/ptr.5149; http://onlinelibrary.wiley.com/doi/10.1002/ptr.5149/abstract. eISSN: 1099-1573; PMID: 24648302.
  57. Comparative Potencies of Nutraceuticals in Chemically Induced Skin Tumor Prevention. Villaseñor, Irene M., Simon, Ma Karenina B. and Villanueva, Ainstein M.A. [ed.] Leonard A. Cohen. 1, Valhalla: Taylor and Francis, 2002, Nutrition and Cancer, Vol. 44, pp. 66-70. DOI: 10.1207/S15327914NC441_9; http://www.tandfonline.com/doi/abs/10.1207/S15327914NC441_9. ISSN: 0163-5581; PMID: 12672643.
  58. Surh, Young-Joon and Chun, Kyung-Soo. Cancer Chemopreventive Effects of Curcumin. [ed.] Bharat B. Aggarwal, Young-Joon Surh and Shishir Shishodia. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. New York: Springer Science+Business Media, LLC, 2007, 2, pp. 149-172. ISBN-13: 978-0-387-46400-8.
  59. Servan-Schreiber, David. Anticancer: A New Way of Life. 3. New York: Viking: Penguin Group (USA) Inc., 2009. ISBN: 1-101-16242-2.
  60. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Anand, Preetha, et al., et al. [ed.] Vincent H.L Lee. 9, Hong Kong: Springer US, September 1, 2008, Pharmaceutical Research, Vol. 25, pp. 2097-2116. DOI: 10.1007/s11095-008-9661-9; http://link.springer.com/article/10.1007%2Fs11095-008-9661-9. ISSN: 0724-8741; PMID: 18626751.
  61. A Phase I/II Study of Complementary Therapy Using Curcumin for Patients with Gemcitabine-Resistant Pancreatic Cancer. Kanai, Masashi, et al., et al. [ed.] H. Newell and E.A. Sausville. 1, Newcastle; Baltimore: Springer-Verlag, July 1, 2011, Cancer Chemotherapy and Pharmacology, Vol. 68, pp. 157-164. DOI: 10.1007/s00280-010-1470-2; http://link.springer.com/article/10.1007%2Fs00280-010-1470-2. ISSN: 0344-5704.
  62. Colon Cancer Survival With Herbal Medicine and Vitamins Combined With Standard Therapy in a Whole-Systems Approach: Ten-Year Follow-up Data Analyzed With Marginal Structural Models and Propensity Score Methods. McCulloch, Michael, et al., et al. [ed.] Keith I. Block. 3, Chicago: SAGE Publications, September 30, 2011, Integrative Cancer Therapies, Vol. 10, pp. 240-259. DOI: 10.1177/1534735411406539; http://journals.sagepub.com/doi/10.1177/1534735411406539. eISSN: 1552-695X; PMID: 21964510.
  63. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Mimeault, Murielle and Batra, Surinder K. [ed.] Siu-wai Leung. 31, Macao: BioMed Central Ltd.: International Society for Chinese Medicine, August 23, 2011, Chinese Medicine, Vol. 6. DOI: 10.1186/1749-8546-6-31; http://www.cmjournal.org/content/6/1/31. ISSN: 1749-8546; PMID: 21859497.
  64. Clinical Evaluation of Oral Curcumin in Prevention of Acute Dermatitis in Breast Cancer Radiotherapy. Hemati, Simin and Saeedi, Armin. [ed.] Roya Kelishadi. 152, Isfahan: Isfahan University of Medical Sciences, October 2011, Journal of Isfahan Medical School, Vol. 29, pp. 1129-1136. ISSN: 1027-7595.
  65. Curcumin for Radiation Dermatitis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Thirty Breast Cancer Patients. Ryan, Julie L., et al., et al. [ed.] Marc S. Mendonca. 1, Indianapolis: BioOne: Radiation Research Society, June 7, 2013, Radiation Research, Vol. 180, pp. 34-43. DOI: 10.1667/RR3255.1; http://www.bioone.org/doi/10.1667/RR3255.1. ISSN: 0033-7587; PMCID: PMC3998827.
  66. Sandalwood Oil and Turmeric-Based Cream Prevents Ionizing Radiation-Induced Dermatitis in Breast Cancer Patients: Clinical Study. Rao, Suresh, et al., et al. [ed.] Gerhard Litscher. 3, Graz: MDPI AG, June 24, 2017, Medicines, Vol. 4, p. 43. DOI: 10.3390/medicines4030043; http://www.mdpi.com/2305-6320/4/3/43. eISSN: 2305-6320.
  67. The Indian Spice Turmeric Delays and Mitigates Radiation-Induced Oral Mucositis in Patients Undergoing Treatment for Head and Neck Cancer: An Investigational Study. Rao, Suresh, et al., et al. [ed.] Keith I. Block. 3, Chicago: Sage Publications, May 2014, Integrative Cancer Therapies, Vol. 13, pp. 201-210. DOI: 10.1177/1534735413503549; http://journals.sagepub.com/doi/10.1177/1534735413503549. ISSN: 1534-7354; PMID: 24165896.
  68. Plant-derived health - the effects of turmeric and curcuminoids. Bengmark, S., Mesa, M. D. and Gil, A. 3, s.l.: Sociedad Española de Nutrición Parenteral y Enteral, May-June 2009, Nutrición Hospitalaria, Vol. 24. ISSN: 0212-1611.
  69. Sarker, Satyajit D. and Nahar, Lutfun. Bioactivity of Turmeric. [ed.] P. N. Ravindran, K. Nirmal Babu and K. Sivaraman. Turmeric: The Genus Curcuma. Boca Raton: CRC Press: Taylor & Francis Group, LLC, 2007, 9, pp. 258-285. ISBN-13: 978-0-8493-7034-2.
  70. Aqil, Farrukh, Ahmad, Iqbal and Owais, Mohammad. Targeted Screening of Bioactive Plant Extracts and Phytocompounds Against Problematic Groups of Multidrug-Resistant Bacteria. [ed.] Iqbal Ahmad, Farrukh Aqil and Mohammad Owais. Modern Phytomedicine: Turning Medicinal Plants into Drugs. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, 9, pp. 173-198. ISBN-13: 978-3-527-31530-7.
  71. Mineral micronutrient and prebiotic carbohydrate profiles of USA-grown kale (Brassica oleracea L. var. acephala). Thavarajah, Dil, et al., et al. [ed.] A.Z. Mercadante. Campinas: Elsevier Inc., September 2016, Journal of Food Composition and Analysis, Vol. 52, pp. 9-15. DOI: 10.1016/j.jfca.2016.07.003; http://www.sciencedirect.com/science/article/pii/S0889157516301132. ISSN: 0889-1575.
  72. Effect of different proportion of sulphur treatments on the contents of glucosinolate in kale (Brassica oleracea var. acephala) commonly consumed in Republic of Korea. Park, Ye-Jin, et al., et al. [ed.] Abdullah S. Alhomida. Riyadh: Elsevier B.V.: King Saud University, May 11, 2017, Saudi Journal of Biological Sciences, Vol. In Press. DOI: 10.1016/j.sjbs.2017.04.012; http://www.sciencedirect.com/science/article/pii/S1319562X17301353?via%3Dihub. ISSN: 1319-562X.
  73. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables. Zhang, Xiaohui, et al., et al. [ed.] Suzanne Farley. 6, London: Macmillan Publishers Limited, part of Springer Nature, January 4, 2016, Scientific Reports, Vol. 2016, p. Article number: 18618. DOI: 10.1038/srep18618; http://www.nature.com/articles/srep18618. ISSN: 2045-2322; PMID: 26727246.
  74. Effect of conventional cooking on changes in the contents of basic composition and glucosinolates in kale. Kapusta-Duch, Joanna, et al., et al. [ed.] Witold Wacławek. 4, Opole: Society of Ecological Chemistry and Engineering, 2016, Ecological Chemistry and Engineering. A, Vol. 23, pp. 465-480. ISSN: 1898-6188.
  75. Inhibitory effect of whole strawberries, garlic juice or kale juice on endogenous formation of N-nitrosodimethylamine in humans. Chung, Mi Ja, Lee, Sung Ho and Sung, Nak Ju. [ed.] Manfred Schwab. 1, Heidelberg: Elsevier Ireland Ltd., August 8, 2002, Cancer Letters, Vol. 182, pp. 1-10. DOI: 10.1016/S0304-3835(02)00076-9; http://linkinghub.elsevier.com/retrieve/pii/S0304383502000769. ISSN: 0304-3835; PMID: 12175517.
  76. Antioxidant and antigenotoxic activities of Angelica keiskei, Oenanthe javanica and Brassica oleracea in the Salmonella mutagenicity assay and in HCT116 human colon cancer cells. Kwon, Daejoong, et al., et al. [ed.] Angelo Azzi. 4, Boston: John Wiley & Sons, Inc.: International Union of Biochemistry and Molecular Biology, Inc., 2006, Biofactors, Vol. 26, pp. 231-244. DOI: 10.1002/biof.5520260402; http://onlinelibrary.wiley.com/doi/10.1002/biof.5520260402/abstract. ISSN: 1872-8081; PMID: 17119270.
  77. Antiproliferative Effects of Fresh and Thermal Processed Green and Red Cultivars of Curly Kale (Brassica oleracea L. convar. acephala var. sabellica). Olsen, Helle, et al., et al. [ed.] James N. Seiber. 30, Davis: American Chemical Society, July 6, 2012, Journal of Agricultural and Food Chemistry, Vol. 60, pp. 7375-7383. DOI: 10.1021/jf300875f; http://pubs.acs.org/doi/abs/10.1021/jf300875f. ISSN: 0021-8561; PMID: 22769426.
  78. Increased anticancer effects of organically-cultivated kale (Brassica oleracea Acephala group) in AGS human adenocarcinoma cells. Park, Kun Young, et al., et al. [ed.] C. Jamie Newbold. OCE8, Aberystwyth: Cambridge University Press, May 2008, Proceedings of the Nutrition Society, Vol. 67, p. E391. DOI: 10.1017/S0029665108000657; https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/increased-anticancer-effects-of-organicallycultivated-kale-brassica-oleracea-acephala-group-in-ags-human-adenocarcinoma-cells/CBDF68BC2B7FE395500FC85B6E0705E3. ISSN: 0029-6651.
  79. Concomitant activation of pro- and antiproliferative mechanisms abrogate tumor growth inhibition by kale sprout intervention in a human prostate cancer xenograft model. Kim, J.H., et al., et al. Houston: American Association for Cancer Research, 2009. Frontiers in Cancer Prevention Research. Proceedings Poster Session A148.
  80. Cruciferous Vegetables and Human Cancer Risk: Epidemiologic Evidence and Mechanistic Basis. Higdon, Jane V., et al., et al. [ed.] Rodolfo Paoletti and Giovanni Biggio. 3, Milan: Elsevier Ltd., November 1, 2007, Pharmacological Research, Vol. 55, pp. 224-236. DOI: 10.1016/j.phrs.2007.01.009; http://www.sciencedirect.com/science/article/pii/S1043661807000321. ISSN: 1043-6618; PMID: 17317210.
  81. Dietary glucosinolate intake and risk of prostate cancer in the EPIC-Heidelberg cohort study. Steinbrecher, Astrid, et al., et al. [ed.] Harald zur Hausen. 9, Heidelberg: John Wiley & Sons, Inc.: UICC, 2009, International Journal of Cancer, Vol. 125, pp. 2179-2186. DOI: 10.1002/ijc.24555; http://onlinelibrary.wiley.com/doi/10.1002/ijc.24555/abstract. ISSN: 1097-0215; PMID: 19585501.
  82. Volatile Constituents throughout Brassica oleracea L. Var. acephala Germination. Fernandes, Fátima, et al., et al. [ed.] James N. Seiber. 15, Davis: American Chemical Society, August 12, 2009, Journal of Agricultural and Food Chemistry, Vol. 57, pp. 6795-6802. DOI: 10.1021/jf901532m; http://pubs.acs.org/doi/abs/10.1021/jf901532m. ISSN: 0021-8561; PMID: 19606906.
  83. The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates. Zhang, Yuesheng. [ed.] Curtis C. Harris. 1, Bethesda: Oxford University Press, January 1, 2012, Carclnogenesis: Integrative Cancer Research, Vol. 33, pp. 2-9. DOI: 10.1093/carcin/bgr255; https://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgr255. ISSN: 0143-3334; PMID: 22080571.
  84. Quantitative profiling of glucosinolates by LC-MS analysis reveals several cultivars of cabbage and kale as promising sources of sulforaphane. Sasaki, Katsunori, et al., et al. [ed.] David Hage. Lincoln: Elsevier B.V., August 15, 2012, Journal of Chromatography B, Vol. 903, pp. 171-176. DOI: 10.1016/j.jchromb.2012.07.017; http://www.sciencedirect.com/science/article/pii/S1570023212004187?via%3Dihub. ISSN: 1570-0232; PMID: 22857862.
  85. Effect of preliminary processing and method of preservation on the content of glucosinolates in kale (Brassica oleracea L. var. acephala) leaves. Korus, Anna, et al., et al. [ed.] Katrin Hecht. 2, Part 1, Zürich: Elsevier Ltd., December 2014, LWT - Food Science and Technology, Vol. 59, pp. 1003-1008. DOI: 10.1016/j.lwt.2014.06.030; http://www.sciencedirect.com/science/article/pii/S0023643814003831?via%3Dihub. ISSN: 0023-6438.
  86. Dose-Dependent Responses of I3C and DIM on T-Cell Activation in the Human T Lymphocyte Jurkat Cell Line. Liu, Man, et al., et al. [ed.] Maurizio Battino. 7, Ancona: MDPI AG, July 2017, International Journal of Molecular Sciences, Vol. 18, p. 1409. DOI: 10.3390/ijms18071409; http://www.mdpi.com/1422-0067/18/7/1409. eISSN: 1422-0067; PMID: 28671563.
  87. Immunostimulatory in Vitro and in Vivo Effects of a Water-Soluble Extract from Kale. Nishi, Kosuke, et al., et al. [ed.] Kazumitsu Ueda. 1, Kyoto: Taylor & Francis Online, January 7, 2011, Bioscience, Biotechnology, and Biochemistry, Vol. 75, pp. 40-46. DOI: 10.1271/bbb.100490; http://www.tandfonline.com/doi/abs/10.1271/bbb.100490. ISSN: 0916-8451; PMID: 21228486.
  88. 3-Butenyl isothiocyanate: a hydrolytic product of glucosinolate as a potential cytotoxic agent against human cancer cell lines. Arora, Rohit, et al., et al. [ed.] Narpinder Singh. 9, Amritsar: Springer India, September 2016, Journal of Food Science and Technology, Vol. 53, pp. 3437-3445. DOI: 10.1007/s13197-016-2316-7; https://link.springer.com/article/10.1007%2Fs13197-016-2316-7. ISSN: 0022-1155; PMID: 27777449.
  89. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil). Sávio, André Luiz Ventura, Silva, Glenda Nicioli da and Salvadoria, Daisy Maria Fávero. [ed.] J. Vijg. New York City: Elsevier B.V., January 2015, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Vol. 771, pp. 29-35. DOI: 10.1016/j.mrfmmm.2014.11.004; http://www.sciencedirect.com/science/article/pii/S0027510714002000. ISSN: 0027-5107; PMID: 25771977.
  90. Allyl isothiocyanate triggers G2/M phase arrest and apoptosis in human brain malignant glioma GBM 8401 cells through a mitochondria-dependent pathway. Chen, Nian-Gu, et al., et al. [ed.] Demetrios A. Spandidos. 2, Athens: Spandidos Publications, August 1, 2010, Oncology Reports, Vol. 24, pp. 449-455. DOI: 10.3892/or_00000878; https://www.spandidos-publications.com/or/24/2/449. ISSN: 1021-335X; PMID: 20596632.
  91. Effect of allyl isothiocyanate on NF-κB signaling in 7,12-dimethylbenz(a)anthracene and N-methyl-N-nitrosourea-induced mammary carcinogenesis. Rajakumar, Thangarasu, et al., et al. [ed.] Masakazu Toi. Kyoto: Springer Japan; Japanese Breast Cancer Society, May 13, 2017, Breast Cancer, Vol. Epub ahead of print, pp. 1-10. DOI: 10.1007/s12282-017-0783-y; https://link.springer.com/article/10.1007%2Fs12282-017-0783-y. ISSN: 1340-6868; PMID: 28501931.
  92. Allyl isothiocyanate inhibits cell metastasis through suppression of the MAPK pathways in epidermal growth factor stimulated HT29 human colorectal adenocarcinoma cells. Lai, Kuang-Chi, et al., et al. [ed.] Demetrios A. Spandidos. 1, Athens: Spandidos Publications, January 2014, Oncology Reports, Vol. 31, pp. 189-196. DOI: 10.3892/or.2013.2865; https://www.spandidos-publications.com/or/31/1/189. ISSN: 1021-335X; PMID: 24270601.
  93. Allyl Isothiocyanate Inhibits the Proliferation of Renal Carcinoma Cell Line GRC-1 by Inducing an Imbalance Between Bcl2 and Bax. Jiang, Zhongyong, et al., et al. [ed.] George B. Stefano. Old Westbury: International Scientific Information, Inc., November 2016, Medical Science Monitor, Vol. 22, pp. 4283-4288. DOI: 10.12659/MSM.897315; https://www.medscimonit.com/abstract/index/idArt/897315. eISSN: 1643-3750; PMID: 27834342.
  94. Studies on the mechanism of the inhibition of human leukaemia cell growth by dietary isothiocyanates and their cysteine adducts in vitro. Xu, Ke and Thornalley, Paul J. 2, s.l.: Elsevier B.V., July 15, 2000, Biochemical Pharmacology, Vol. 60, pp. 221-231. DOI: 10.1016/S0006-2952(00)00319-1; http://www.sciencedirect.com/science/article/pii/S0006295200003191?via%3Dihub. ISSN: 0006-2952; PMID: 10825467.
  95. Allyl Isothiocyanate Influences Cell Adhesion, Migration and Metalloproteinase Gene Expression in SK-Hep1 Cells. Hwang, Eun-Sun and Kim, Gun Hee. [ed.] Steven R. Goodman. 1, Syracuse: SAGE: The Society for Experimental Biology and Medicine, January 2009, Experimental Biology and Medicine, Vol. 234, pp. 105-111. DOI: 10.3181/0806-RM-190; http://journals.sagepub.com/doi/10.3181/0806-RM-190. ISSN: 1535-3699; PMID: 18997101.
  96. Synergistic effect of allyl isothiocyanate (AITC) on cisplatin efficacy in vitro and in vivo. Ling, Xiang, et al., et al. [ed.] Mien-Chie Hung. 8, Houston: e-Century Publishing Corporation, July 15, 2015, American Journal of Cancer Research, Vol. 5, pp. 2516-2530. ISSN: 2156-6976; PMID: 26396928.
  97. TRPA1 is functionally expressed in melanoma cells but is not critical for impaired proliferation caused by allyl isothiocyanate or cinnamaldehyde. Oehler, Beatrice, et al., et al. [ed.] Martin C. Michel. 6, Amsterdam: Springer-Verlag, June 2012, Naunyn-Schmiedeberg's Archives of Pharmacology, Vol. 385, pp. 555-563. DOI: 10.1007/s00210-012-0747-x; https://link.springer.com/article/10.1007%2Fs00210-012-0747-x. ISSN: 0028-1298; PMID: 22426997.
  98. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Srivastava, Sanjay K., et al., et al. [ed.] Curtis C. Harris. 10, Bethesda: Oxford University Press, October 1, 2003, Carclnogenesis: Integrative Cancer Research, Vol. 24, pp. 1665-1670. DOI: 10.1093/carcin/bgg123; https://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgg123. ISSN: 0143-3334; PMID: 12896904.
  99. Volatile isoprenoid constituents of fruits, vegetables and herbs cumulatively suppress the proliferation of murine B16 melanoma and human HL-60 leukemia cells. Tatman, Dana and Mo, Huanbiao. [ed.] Manfred Schwab. 2, Heidelberg: Elsevier Ireland Ltd., January 25, 2002, Cancer Letters, Vol. 175, pp. 129-139. DOI: 10.1016/S0304-3835(01)00723-6; http://www.sciencedirect.com/science/article/pii/S0304383501007236. ISSN: 0304-3835; PMID: 11741740.
  100. Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis--Relationship with tissue anthocyanin levels. Cooke, Darren, et al., et al. [ed.] Harald zur Hausen. 9, Heidelberg: John Wiley & Sons, Inc.: UICC, November 1, 2006, International Journal of Cancer, Vol. 119, pp. 2213-2220. DOI: 10.1002/ijc.22090; http://onlinelibrary.wiley.com/doi/10.1002/ijc.22090/abstract. ISSN: 1097-0215; PMID: 16823841.
  101. Açai (Euterpe oleracea Mart.) Polyphenolics in Their Glycoside and Aglycone Forms Induce Apoptosis of HL-60 Leukemia Cells. Del Pozo-Insfran, David, Percival, Susan S. and Talcott, Stephen T. [ed.] James N. Seiber. 4, Davis: American Chemical Society, February 22, 2006, Journal of Agricultural and Food Chemistry, Vol. 54, pp. 1222-1229. DOI: 10.1021/jf052132n; http://pubs.acs.org/doi/abs/10.1021/jf052132n. ISSN: 0021-8561; PMID: 16478240.
  102. Cyanidin 3-Glucoside and Peonidin 3-Glucoside Inhibit Tumor Cell Growth and Induce Apoptosis In Vitro and Suppress Tumor Growth In Vivo. Chen, Pei-Ni, et al., et al. [ed.] Leonard A. Cohen. 2, Valhalla: Taylor and Francis Group, LLC, 2005, Nutrition and Cancer, Vol. 53, pp. 232-243. DOI: 10.1207/s15327914nc5302_12; http://www.tandfonline.com/doi/abs/10.1207/s15327914nc5302_12. ISSN: 0163-5581; PMID: 16573384.
  103. Inhibition of pancreatic cancer cell migration by plasma anthocyanins isolated from healthy volunteers receiving an anthocyanin-rich berry juice. Kuntz, Sabine, Kunz, Clemens and Rudloff, Silvia. [ed.] Ian Rowland. 1, Reading: Springer Berlin Heidelberg, February 2017, European Journal of Nutrition, Vol. 56, pp. 203-214. DOI: 10.1007/s00394-015-1070-3; https://link.springer.com/article/10.1007%2Fs00394-015-1070-3. ISSN: 1436-6207; PMID: 26476633.
  104. Cyanidin-3-glucoside suppresses B[a]PDE-induced cyclooxygenase-2 expression by directly inhibiting Fyn kinase activity. Lim, Tae-Gyu, et al., et al. [ed.] Sam J. Enna. 2, Kansas City: Elsevier B.V., July 15, 2011, Biochemical Pharmacology, Vol. 82, pp. 167-174. DOI: 10.1016/j.bcp.2011.03.032; http://www.sciencedirect.com/science/article/pii/S000629521100219X?via%3Dihub. ISSN: 0006-2952; PMID: 21501596.
  105. Dietary Consumption of Black Raspberries or Their Anthocyanin Constituents Alters Innate Immune Cell Trafficking in Esophageal Cancer. Peiffer, Daniel S., et al., et al. [ed.] Robert D. Schreiber and Philip D. Greenberg. 1, Seattle: American Association for Cancer Research, January 2016, Cancer Immunology Research, Vol. 4, pp. 72-82. DOI: 10.1158/2326-6066.CIR-15-0091; http://cancerimmunolres.aacrjournals.org/content/4/1/72. ISSN: 2326-6066; PMID: 26603620.
  106. Effect of beta-ionone in human mammary cancer cells (Er-) by MAPK pathway. Liu, J.R., et al., et al. 6, November 2005, Journal of Hygiene Research, Vol. 34, pp. 706-709. ISSN: 1000-8020; PMID: 16535841.
  107. Apoptosis initiation of β-ionone in SGC-7901 gastric carcinoma cancer cells via a PI3K-AKT pathway. Liu, Qian, et al., et al. [ed.] Jan G. Hengstler. 3, Dortmund: Springer-Verlag, March 2013, Archives of Toxicology, Vol. 87, pp. 481-490. DOI: 10.1007/s00204-012-0962-8; https://link.springer.com/article/10.1007%2Fs00204-012-0962-8. ISSN: 0340-5761; PMID: 23100158.
  108. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562. Faezizadeh, Zohreh, Gharib, Amir and Godarzee, Masoud. [ed.] Alireza Bakhshipour. 6, Zahedan: Zahedan University of Medical Sciences, 2016, Zahedan Journal of Research in Medical Sciences, Vol. 18, p. e7364. DOI: 10.17795/zjrms-7364; http://zjrms.com/en/articles/7364.html. eISSN: 2383-2894.
  109. Antiproliferative and antioxidant potential of beta-ionone against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Asokkumar, Selvamani, et al., et al. [ed.] Naranjan S. Dhalla. 1-2, Winnipeg: Springer Science+Business Media, April 2012, Molecular and Cellular Biochemistry, Vol. 363, pp. 335-345. DOI: 10.1007/s11010-011-1186-6;https://link.springer.com/article/10.1007%2Fs11010-011-1186-6. ISSN: 0300-8177; PMID: 22187222.
  110. Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Ayaz, Faik Ahmet, et al., et al. [ed.] Gordon G. Birch. 1, Reading: Elsevier Ltd., March 1, 2008, Food Chemistry, Vol. 107, pp. 19-25. DOI: 10.1016/j.foodchem.2007.07.003; http://www.sciencedirect.com/science/article/pii/S0308814607006826?via%3Dihub. ISSN: 0308-8146.
  111. Caffeic Acid Induces Apoptosis in Human Cervical Cancer Cells Through the Mitochondrial Pathway. Chang, Wei-Chun, et al., et al. [ed.] Chih-Ping Chen. 4, Taipei: Elsevier Inc., December 2010, Taiwanese Journal of Obstetrics and Gynecology, Vol. 49, pp. 419-424. DOI: 10.1016/S1028-4559(10)60092-7; http://www.tjog-online.com/article/S1028-4559(10)60092-7/pdf. ISSN: 1028-4559.
  112. Ajila, C.M. and Brar, S.K. Role of Dietary Antioxidants in Cancer. [ed.] Sharmila Shankar and Rakesh K. Srivastava. Nutrition, Diet and Cancer. New York: Springer Science+Business Media B.V., 2012, 16, pp. 377-412. ISBN: 978-94-007-2922-3.
  113. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage. Murador, Daniella Carisa, Mercadante, Adriana Zerlotti and de Rosso, Veridiana Vera. [ed.] Gordon G. Birch. Reading: Elsevier Ltd., April 1, 2016, Food Chemistry, Vol. 196, pp. 1101-1107. DOI: 10.1016/j.foodchem.2015.10.037; http://www.sciencedirect.com/science/article/pii/S0308814615300376?via%3Dihub. ISSN: 0308-8146; PMID: 26593594.
  114. Carotenoid composition of a leafy vegetable in relation to some agricultural variables. Mercadante, Adriana Z. and Rodriguez-Amaya, Delia B. [ed.] Irvin E. Liener. 6, Minneapolis: American Chemical Society, June 1991, Journal of Agricultural and Food Chemistry, Vol. 39, pp. 1094-1097. DOI: 10.1021/jf00006a018; http://pubs.acs.org/doi/abs/10.1021/jf00006a018. ISSN: 0021-8561.
  115. Changes in kale (Brassica oleracea L. var. acephala) carotenoid and chlorophyll pigment concentrations during leaf ontogeny. Lefsrud, Mark, et al., et al. [ed.] John Bower, et al., et al. 2, Scottsville; Hubei; Lexington; Grossbeeren: Elsevier B.V., March 26, 2007, Scientia Horticulturae, Vol. 112, pp. 136-141. DOI: 10.1016/j.scienta.2006.12.026; http://www.sciencedirect.com/science/article/pii/S0304423806005140?via%3Dihub. ISSN: 0304-4238.
  116. Abstract 2183: Serum alpha-tocopherol, beta carotene and cancer survival in the ATBC Study. Moy, Kristin A., et al., et al. [ed.] George C. Prendergast. 19 Supplement, Wynnewood: American Association for Cancer Research, October 2014, Cancer Research, Vol. 74. DOI: 10.1158/1538-7445.AM2014-2183; http://cancerres.aacrjournals.org/content/74/19_Supplement/2183. ISSN: 0008-5472.
  117. Lutein, But Not Other Carotenoids, Selectively Inhibits Breast Cancer Cell Growth Through Several Molecular Mechanisms. Swanson, Haley M., et al., et al. [ed.] Thoru Pederson. 1, Amherst: Federation of American Societies for Experimental Biology, April 2016, The FASEB Journal, Vol. 30, p. Supplement 34.2. ISSN: 0892-6638.
  118. Intakes of Vitamin A, C, and E, and β-Carotene Are Associated With Risk of Cervical Cancer: A Case-Control Study in Korea. Kim, Jeongseon, et al., et al. [ed.] Leonard A. Cohen. 2, Valhalla: Taylor and Francis Group, LLC, January 21, 2010, Nutrition and Cancer, Vol. 62, pp. 181-189. DOI: 10.1080/01635580903305326; http://www.tandfonline.com/doi/abs/10.1080/01635580903305326. ISSN: 0163-5581; PMID: 20099192.
  119. Biological effects of lutein and kale on the prevention of colonic inflammation and carcinogenesis. Liu, Chun, Bronson, Roderick T. and Wang, Xiang-Dong. [ed.] George C. Prendergast. Tampa; Philadelphia : American Association for Cancer Research, 2017. Proceedings of the AACR Special Conference on Colorectal Cancer: From Initiation to Outcomes. Vol. 77, p. Abstract nr A31. DOI: 10.1158/1538-7445.CRC16-A31; http://cancerres.aacrjournals.org/content/77/3_Supplement/A31. ISSN: 0008-5472.
  120. Alpha-carotene inhibits metastasis in Lewis lung carcinoma in vitro, and suppresses lung metastasis and tumor growth in combination with taxol in tumor xenografted C57BL/6 mice. Liu, Yi-Zhen, et al., et al. [ed.] Bernhard Hennig. 6, Lexington: Elsevier Inc., June 2015, The Journal of Nutritional Biochemistry, Vol. 26, pp. 607-615. DOI: 10.1016/j.jnutbio.2014.12.012; http://www.sciencedirect.com/science/article/pii/S0955286315000285?via%3Dihub. ISSN: 0955-2863; PMID: 25736483.
  121. Dietary Lutein Modulates Growth and Survival Genes in Prostate Cancer Cells. Rafi, Mohamed M., et al., et al. [ed.] Sampath Parthasarathy and Yangha Kim. 2, Orlando; Seoul: Mary Ann Liebert, Inc., February 2015, Journal of Medicinal Food, Vol. 18, pp. 173-181. DOI: 10.1089/jmf.2014.0003; http://online.liebertpub.com/doi/abs/10.1089/jmf.2014.0003. ISSN: 1096-620X; PMID: 25162762.
  122. Abstract 3812: Induction of apoptosis by zeaxanthin in human uveal melanoma cells. Goswami, Sandeep, et al., et al. [ed.] George C. Prendergast. Philadelphia: American Association for Cancer Research, 2015. Proceedings of the 106th Annual Meeting of the American Association for Cancer Research. Vol. 75 (15 Suppl), p. Abstract nr 3812. DOI: 10.1158/1538-7445.AM2015-3812; http://cancerres.aacrjournals.org/content/75/15_Supplement/3812. ISSN: 0008-5472.
  123. Chemopreventive Mechanisms of Natural Products in Oral, Mammary and Skin Carcinogenesis: An Overview. Manoharan, S., Singh, R.B. and Balakrishnan, S. [ed.] Ram B. Singh. Moradabad: Bentham Open, January 2009, The Open Nutraceuticals Journal, Vol. 2, pp. 52-63. DOI: 10.2174/1876396000902010052; https://benthamopen.com/ABSTRACT/TONUTRAJ-2-52. ISSN: 1876-3960.
  124. A Phase I Study of Indole-3-Carbinol in Women: Tolerability and Effects. Reed, Gregory A., et al., et al. [ed.] David S. Alberts and John D. Potter. 8, Tuscon; Seattle: American Association for Cancer Research, August 2005, Cancer Epidemiology, Biomarkers & Prevention, Vol. 14, pp. 1953-1960. DOI: 10.1158/1055-9965.EPI-05-0121; http://cebp.aacrjournals.org/content/14/8/1953. ISSN: 1055-9965; PMID: 16103443.
  125. Indole-3-carbinol inhibits tumorigenicity of hepatocellular carcinoma cells via suppression of microRNA-21 and upregulation of phosphatase and tensin homolog. Wang, Xinmei, et al., et al. [ed.] Athar Chishti and Nikolaus Pfanner. 1, Boston; Freiburg: Elsevier, January 2015, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Vol. 1853, pp. 244-253. DOI: 10.1016/j.bbamcr.2014.10.017; http://www.sciencedirect.com/science/article/pii/S0167488914003760?via%3Dihub. ISSN: 0167-4889; PMID: 25447674.
  126. Indole-3-Carbinol Inhibits Nasopharyngeal Carcinoma Growth through Cell Cycle Arrest In Vivo and In Vitro. Chen, Zhe, et al., et al. [ed.] Yuan-Soon Ho. 12, Taipei: Public Library of Science, December 16, 2013, PLoS ONE, Vol. 8, p. e82288. DOI: 10.1371/journal.pone.0082288; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082288. eISSN: 1932-6203; PMID: 24358165.
  127. Dose-Dependent Inhibition of Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis in A/J Mice by Indole-3-Carbinol. Kassie, Fekadu, et al., et al. [ed.] Scott M. Lippman. 7, Philadelphia: American Association for Cancer Research, December 2008, Cancer Prevention Research, Vol. 1, pp. 568-576. DOI: 10.1158/1940-6207.CAPR-08-0064; http://cancerpreventionresearch.aacrjournals.org/content/1/7/568. ISSN: 1940-6207; PMID: 19139007.
  128. Inhibition of oncogenic BRAF activity by indole-3-carbinol disrupts microphthalmia-associated transcription factor expression and arrests melanoma cell proliferation. Kundu, Aishwarya, et al., et al. [ed.] John DiGiovanni. 1, Austin: Wiley-Liss, Inc.: John Wiley & Sons, Inc., January 2017, Molecular Carcinogenesis, Vol. 56, pp. 49-61. DOI: 10.1002/mc.22472; http://onlinelibrary.wiley.com/doi/10.1002/mc.22472/abstract. ISSN: 1098-2744; PMID: 26878440.
  129. Indole-3-carbinol synergistically sensitises ovarian cancer cells to bortezomib treatment. Taylor-Harding, B., et al., et al. [ed.] Adrian L. Harris. 2, London: Nature Publishing Group, January 17, 2012, British Journal of Cancer, Vol. 106, pp. 333-343. DOI: 10.1038/bjc.2011.546; http://www.nature.com/bjc/journal/v106/n2/full/bjc2011546a.html. ISSN: 0007-0920; PMID: 22166800.
  130. Phytochemicals from Cruciferous Vegetables, Epigenetics, and Prostate Cancer Prevention. Watson, Gregory W., et al., et al. [ed.] Ho-Leung Fung. 4, Buffalo: Springer US: The American Association of Pharmaceutical Scientists, October 2013, The AAPS Journal, Vol. 15, pp. 951-961. DOI: 10.1208/s12248-013-9504-4; https://link.springer.com/article/10.1208%2Fs12248-013-9504-4. ISSN: 1550-7416; PMID: 23800833.
  131. Indole-3-carbinol (I3C) increases apoptosis, represses growth of cancer cells, and enhances adenovirus-mediated oncolysis. Chen, Lan, et al., et al. [ed.] Wafik S. El-Deiry. 9, Philadelphia: Landes Bioscience, September 2014, Cancer Biology & Therapy, Vol. 15, pp. 1256-1267. DOI: 10.4161/cbt.29690; http://www.tandfonline.com/doi/abs/10.4161/cbt.29690. ISSN: 1538-4047; PMID: 24972095.
  132. Indole-3-carbinol enhances sorafenib cytotoxicity in hepatocellular carcinoma cells: A mechanistic study. Abdelmageed, Mai M., et al., et al. [ed.] Suzanne Farley. 6, London: Macmillan Publishers Limited, part of Springer Nature, September 2016, Scientific Reports, Vol. 2016, p. Article number: 32733. DOI: 10.1038/srep32733; http://www.nature.com/articles/srep32733. ISSN: 2045-2322; PMID: 27612096.
  133. Up-regulation of cytochrome P450 and phase II enzyme systems in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin. Razis, Ahmad Faizal Abdull, et al., et al. [ed.] Rolf Stahel. 3, Zurich: Elsevier Ireland Ltd., March 2011, Lung Cancer, Vol. 71, pp. 298-305. DOI: 10.1016/j.lungcan.2010.06.015; http://linkinghub.elsevier.com/retrieve/pii/S0169500210003156. ISSN: 0169-5002; PMID: 20638746.
  134. Naturally-Occurring Glucosinolates, Glucoraphanin and Glucoerucin, are Antagonists to Aryl Hydrocarbon Receptor as Their Chemopreventive Potency. Razis, Ahmad Faizal Abdull and Noor, Noramaliza Mohd. [ed.] Malcolm A. Moore. 14, Goyang-si Gyeonggi-do: Asian Pacific Organization for Cancer Prevention, December 2015, Asian Pacific Journal of Cancer Prevention, Vol. 16, pp. 5801-5805. DOI: 10.7314/APJCP.2015.16.14.5801; http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=POCPA9_2015_v16n14_5801. ISSN: 1513-7368; PMID: 26320454.
  135. Prevention and Therapy of Cancer by Dietary Monoterpenes. Crowell, Pamela L. [ed.] John W. Suttie. 3, Bethesda: American Society for Nutrition, March 1999, Journal of Nutrition, Vol. 129, pp. 775S-778S. ISSN: 0022-3166; PMID: 10082788.
  136. Proliferation inhibition and apoptosis induction of K562 cells by D-limonene. Gao, D., Xiao, Z. and Lü, A.E. 6, Beijing: Chinese Association of Pathophysiology, December 2006, Journal of Experimental Hematology, Vol. 14, pp. 1120-1122. ISSN: 1009-2137; PMID: 17204176.
  137. Pharmaceutical and Therapeutic Potentials of Essential Oils and Their Individual Volatile Constituents: A Review. Edris, Amr E. [ed.] Elizabeth M. Williamson, et al., et al. 4, Reading: John Wiley & Sons, Ltd., April 2007, Phytotherapy Research, Vol. 21, pp. 308-323. DOI: 10.1002/ptr.2072; http://onlinelibrary.wiley.com/doi/10.1002/ptr.2072/abstract. eISSN: 1099-1573; PMID: 17199238.
  138. Waladkhani, Ali-Reza. Dietary Phytochemicals in Prevention and During Cancer Treatment. [ed.] Ronald Ross Watson and Victor R. Preedy. Bioactive Foods and Extracts: Cancer Treatment and Prevention. Boca Raton: CRC Press: Taylor & Francis Group, LLC, 2011, 14, pp. 237-256. ISBN: 978-1-4398-1621-9.
  139. Natural products as inducers of apoptosis: Implication for cancer therapy and prevention. Taraphdar, Amit K., Roy, Madhumita and Bhattacharya, R.K. [ed.] P. Balaram. 11, Bangalore: Indian Academy of Sciences, June 10, 2001, Current Science, Vol. 80, pp. 1387-1396. ISSN: 0011-3891.
  140. The Antitumor Activities of Flavonoids. Kanadaswami, Chithan, et al., et al. [ed.] John G. Delinasios. 5, Athens: International Institute of Anticancer Research, Sep-Oct 2005, In Vivo, Vol. 19, pp. 895-910. ISSN: 0258-851X.
  141. Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies. Khadem, Shahriar and Marles, Robin J. [ed.] José Alberto Pereira and Paula Andrade. 11, Bragança: MDPI - Open Access Publishing, November 8, 2010, Molecules, Vol. 15, pp. 7985-8005. DOI: 10.3390/molecules15117985; http://www.mdpi.com/1420-3049/15/11/7985. ISSN: 1420-3049; PMID: 21060304.
  142. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. Pei, Kehan, et al., et al. [ed.] Mark Shepherd and Andrew Waterhouse. 9, Hamilton; London: John Wiley & Sons, Inc.: Society of Chemical Industry, July 2016, Journal of the Science of Food and Agriculture, Vol. 96, pp. 2952-2962. DOI: 10.1002/jsfa.7578; http://onlinelibrary.wiley.com/doi/10.1002/jsfa.7578/abstract. eISSN: 1097-0010; PMID: 26692250.
  143. Combination photodynamic therapy of human breast cancer using salicylic acid and methylene blue. Hosseinzadeh, Reza, Khatereh Khorsandi and Jahanshiri, Maryam. [ed.] Malgorzata Baranska, et al., et al. Krakow; Atlanta; São Paulo; San Diego; Frankfurt; Fujian; Bangalore: Elsevier B.V., September 5, 2017, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 184, pp. 198-203. DOI: 10.1016/j.saa.2017.05.008; http://linkinghub.elsevier.com/retrieve/pii/S138614251730375X. ISSN: 1386-1425; PMID: 28499173.
  144. Cyclin A2 and CDK2 as Novel Targets of Aspirin and Salicylic Acid: A Potential Role in Cancer Prevention. Dachineni, Rakesh, et al., et al. [ed.] Karen E. Knudsen. 3, Philadelphia: American Association for Cancer Research, March 2016, Molecular Cancer Research, Vol. 14, pp. 241-252. DOI: 10.1158/1541-7786.MCR-15-0360; http://mcr.aacrjournals.org/content/14/3/241. ISSN: 1557-3125; PMID: 26685215.
  145. Anticancer Effects of Sinapic Acid on Human Colon Cancer Cell Lines HT-29 and SW480. Balaji, Chandrasekaran, et al., et al. [ed.] M.A.Naidu. 3, Mandsaur: Mandsaur Institute of Pharmacy, June 2014, International Journal of Pharmaceutical & Biological Archives, Vol. 5, pp. 176-183. ISSN: 0976-3333.
  146. Influence of sinapic acid on induction of apoptosis in human laryngeal carcinoma cell line. Janakiraman, Kalaimathi; Kathiresan, Suresh; Mariadoss, Arokia Vijayaanand. [ed.] K.Thamizh Selvi. 5, Chennai: s.n., May 2014, International Journal of Modern Research and Reviews, Vol. 2, pp. 165-170. ISSN: 2347-8314.
  147. Inhibition of dimethylhydrazine-induced aberrant crypt foci and induction of apoptosis in rat colon following oral administration of the glucosinolate sinigrin. Smith, T.K., Lund, E.K. and Johnson, I.T. [ed.] Curtis C. Harris. 2, Bethesda: Oxford University Press, February 1, 1998, Carclnogenesis: Integrative Cancer Research, Vol. 19, pp. 267-273. DOI: 10.1093/carcin/19.2.267; https://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/19.2.267. ISSN: 0143-3334; PMID: 9498275.
  148. Anti-Proliferative Activities of Sinigrin on Carcinogen-Induced Hepatotoxicity in Rats. Jie, Meng, et al., et al. [ed.] Salvatore V. Pizzo. 10, Durham: Public Library of Science, October 20, 2014, PLoS ONE, Vol. 9, p. e110145. DOI: 10.1371/journal.pone.0110145; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110145. eISSN: 1932-6203; PMID: 25329483.
  149. Sulforaphane inhibits invasion by phosphorylating ERK1/2 to regulate E-cadherin and CD44v6 in human prostate cancer DU145 cells. Peng, Xiaohui, et al., et al. [ed.] Demetrios A. Spandidos. 3, Athens: Spandidos Publications, July 1, 2015, Oncology Reports, Vol. 34, p. 4098. DOI: 10.3892/or.2015.4098; https://www.spandidos-publications.com/or/34/3/1565. ISSN: 1021-335X; PMID: 26134113.
  150. Inhibitory effects of the natural products indole-3-carbinol and sinigrin during initiation and promotion phases of 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis. Tanaka, Takuji, et al., et al. [ed.] Masaaki Terada. 8, Tokyo: John Wiley & Sons, Inc.; Japanese Cancer Association, August 1992, Japanese Journal of Cancer Research, Vol. 83, pp. 835-842. DOI: 10.1111/j.1349-7006.1992.tb01988.x; http://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.1992.tb01988.x/abstract. eISSN: 1349-7006.
  151. Sulforaphane for the chemoprevention of bladder cancer: molecular mechanism targeted approach. Leone, Andrew, et al., et al. [ed.] Andrei V. Gudkov and Mikhail V. Blagosklonny. 21, Buffalo: Impact Journals, LLC, May 23, 2017, Oncotarget, Vol. 8, pp. 35412-35424. DOI: 10.18632/oncotarget.16015; http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5b%5d=16015. eISSN: 1949-2553; PMID: 28423681.
  152. Combination of lapatinib with isothiocyanates overcomes drug resistance and inhibits migration of HER2 positive breast cancer cells. Kaczyńska, Angelika and Herman-Antosiewicz, Anna. [ed.] Masakazu Toi. 2, Kyoto: Springer Japan; Japanese Breast Cancer Society, March 2017, Breast Cancer, Vol. 24, pp. 271-280. DOI: 10.1007/s12282-016-0700-9; https://link.springer.com/article/10.1007%2Fs12282-016-0700-9. ISSN: 1340-6868; PMID: 27154770.
  153. Mechanism of Sulforaphane-Induced Cell Cycle Arrest and Apoptosis in Human Colon Cancer Cells. Parnaud, Geraldine, et al., et al. [ed.] Leonard A. Cohen. 2, Valhalla: Taylor and Francis Group, LLC, 2004, Nutrition and Cancer, Vol. 48, pp. 198-206. DOI: 10.1207/s15327914nc4802_10; http://www.tandfonline.com/doi/abs/10.1207/s15327914nc4802_10. ISSN: 0163-5581; PMID: 15231455.
  154. Sulforaphane Inhibits Invasion via Activating ERK1/2 Signaling in Human Glioblastoma U87MG and U373MG Cells. Zhou, Yan, et al., et al. [ed.] Jung Weon Lee. 2, Seoul: Public Library of Science, February 28, 2014, PLoS ONE, Vol. 9, p. e90520. DOI: 10.1371/journal.pone.0090520; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090520. eISSN: 1932-6203; PMID: 24587385.
  155. Sulforaphane inhibits proliferation and invasive activity of everolimus-resistant kidney cancer cells in vitro. Juengel, Eva, et al., et al. [ed.] Andrei V. Gudkov and Mikhail V. Blagosklonny. 51, Buffalo: Impact Journals, LLC, December 2016, Oncotarget, Vol. 7, pp. 85208-85219. DOI: 10.18632/oncotarget.13421; http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5b%5d=13421. eISSN: 1949-2553; PMID: 27863441.
  156. Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Shang, Hung-Sheng, et al., et al. [ed.] Paul B. Tchounwou. 1, Jackson: John Wiley & Sons, Inc., January 2017, Environmental Toxicology, Vol. 32, pp. 311-328. DOI: 10.1002/tox.22237; http://onlinelibrary.wiley.com/doi/10.1002/tox.22237/abstract. eISSN: 1522-7278; PMID: 26833863.
  157. Sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cells via the reactive oxygen species-dependent pathway. Wu, Jinsheng, et al., et al. [ed.] Demetrios A. Spandidos. 5, Athens: Spandidos Publications, May 2016, Oncology Reports, Vol. 35, pp. 2977-2983. DOI: 10.3892/or.2016.4638; https://www.spandidos-publications.com/or/35/5/2977. ISSN: 1021-335X; PMID: 26935987.
  158. Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways. Doudican, Nicole A., et al., et al. [ed.] Demetrios A. Spandidos. 5, Athens: Spandidos Publications, November 2012, Oncology Reports, Vol. 28, pp. 1851-1858. DOI: 10.3892/or.2012.1977; https://www.spandidos-publications.com/or/28/5/1851. ISSN: 1021-335X; PMID: 22922937.
  159. Sulforaphane Induced Apoptosis via Promotion of Mitochondrial Fusion and ERK1/2-Mediated 26S Proteasome Degradation of Novel Pro-survival Bim and Upregulation of Bax in Human Non-Small Cell Lung Cancer Cells. Geng, Yang, et al., et al. [ed.] Yan-Gao Man and Naoto T. Ueno. 13, Baltimore; Houston: Ivyspring International Publisher, August 2, 2017, Journal of Cancer, Vol. 8, pp. 2456-2470. DOI: 10.7150/jca.19383; http://www.jcancer.org/v08p2456.htm. ISSN: 1837-9664; PMID: 28900483.
  160. Effectiveness of sulforaphane as a radiosensitizer for murine osteosarcoma cells. Sawai, Yasushi, et al., et al. [ed.] Demetrios A. Spandidos. 3, Athens: Spandidos Publications, March 2013, Oncology Reports, Vol. 29, pp. 941-945. DOI: 10.3892/or.2012.2195; https://www.spandidos-publications.com/or/29/3/941. ISSN: 1021-335X; PMID: 23254561.
  161. Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells. Bryant, Christopher S., et al., et al. [ed.] Christophe Nicot and Alan Storey. 47, Kansas City; Oxford: Biomed Central Ltd., March 2, 2010, Molecular Cancer, Vol. 9. DOI: 10.1186/1476-4598-9-47; https://molecular-cancer.biomedcentral.com/articles/10.1186/1476-4598-9-47. ISSN: 1476-4598; PMID: 20196847.
  162. Sulforaphane enhances irradiation effects in terms of perturbed cell cycle progression and increased DNA damage in pancreatic cancer cells. Li, Chunliu, et al., et al. [ed.] Aamir Ahmad. 7, Mobile: Public Library of Science, July 10, 2017, PLoS ONE, Vol. 12, p. e0180940. DOI: 10.1371/journal.pone.0180940; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180940. eISSN: 1932-6203; PMID: 28700650.
  163. Sulforaphane Inhibits Prostate Carcinogenesis and Pulmonary Metastasis in TRAMP Mice in Association with Increased Cytotoxicity of Natural Killer Cells. Singh, Shivendra V., et al., et al. [ed.] Frank J. Rauscher III. 5, Philadelphia: American Association for Cancer Research, March 1, 2009, Cancer Research, Vol. 69, pp. 2117-2125. DOI: 10.1158/0008-5472.CAN-08-3502; http://cancerres.aacrjournals.org/content/69/5/2117. ISSN: 0008-5472; PMID: 19223537.
  164. Sulforaphane induces G2-M arrest and apoptosis in high metastasis cell line of salivary gland adenoid cystic carcinoma. Chu, Wen-Feng, et al., et al. [ed.] Crispian Scully. 11, London: Elsevier Inc., November 2009, Oral Oncology, Vol. 45, pp. 998-1004. DOI: 10.1016/j.oraloncology.2009.05.641; http://www.oraloncology.com/article/S1368-8375(09)00785-4/fulltext. ISSN: 1368-8375; PMID: 19589718.
  165. Antitumor activity and expression profiles of genes induced by sulforaphane in human melanoma cells. Arcidiacono, Paola, et al., et al. [ed.] Ian Rowland. Epub ahead of print, Reading: Springer Berlin Heidelberg, September 1, 2017, European Journal of Nutrition. DOI: 10.1007/s00394-017-1527-7; https://link.springer.com/article/10.1007%2Fs00394-017-1527-7. ISSN: 1436-6207; PMID: 28864908.
  166. Inhibition of Activator Protein-1 by Sulforaphane Involves Interaction with Cysteine in the cFos DNA-Binding Domain: Implications for Chemoprevention of UVB-Induced Skin Cancer. Dickinson, Sally E., et al., et al. [ed.] Frank J. Rauscher III. 17, Philadelphia: American Association for Cancer Research, September 1, 2009, Cancer Research, Vol. 69, pp. 7103-7110. DOI: 10.1158/0008-5472.CAN-09-0770; http://cancerres.aacrjournals.org/content/69/17/7103. ISSN: 0008-5472; PMID: 19671797.
  167. Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway. Wang, Liping, et al., et al. [ed.] Andrei V. Gudkov and Mikhail V. Blagosklonny. 28, Buffalo: Impact Journals, LLC, September 22, 2015, Oncotarget, Vol. 6, pp. 25917-25931. DOI: 10.18632/oncotarget.4542; http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path[]=4542&path[]=12753. eISSN: 1949-2553; PMID: 26312762.
  168. Sulforaphane inhibited expression of hypoxia-inducible factor-1α in human tongue squamous cancer cells and prostate cancer cells. Yao, Hua, et al., et al. [ed.] Harald zur Hausen. 6, Heidelberg: John Wiley & Sons, Inc.: UICC, September 15, 2008, International Journal of Cancer, Vol. 123, pp. 12558-1261. DOI: 10.1002/ijc.23647; http://onlinelibrary.wiley.com/doi/10.1002/ijc.23647/abstract. ISSN: 1097-0215; PMID: 18561315.
  169. Syringic acid from Tamarix aucheriana possesses antimitogenic and chemo-sensitizing activities in human colorectal cancer cells. Abaza, Mohamed-Salah, et al., et al. [ed.] John M. Pezzuto. 9, West Lafayette: Informa Healthcare USA, Inc., September 2013, Pharmaceutical Biology, Vol. 51, pp. 1110-1124. DOI: 10.3109/13880209.2013.781194; http://www.tandfonline.com/doi/full/10.3109/13880209.2013.781194. ISSN: 1388-0209; PMID: 23745612.
  170. Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors. Orabi, Khaled Y., et al., et al. [ed.] Denys Wheatley. 1, Inverurie: BioMed Central Ltd., August 19, 2013, Cancer Cell International, Vol. 13, p. 82. DOI: 10.1186/1475-2867-13-82; https://cancerci.biomedcentral.com/articles/10.1186/1475-2867-13-82. ISSN: 1475-2867; PMID: 23958424.
  171. Vitamin A and risk of bladder cancer: a meta-analysis of epidemiological studies. Tang, Jian-er, et al., et al. [ed.] Manoj Pandey. 130, Bhopal: BioMed Central Ltd., April 29, 2014, World Journal of Surgical Oncology, Vol. 12. DOI: 10.1186/1477-7819-12-130; http://wjso.biomedcentral.com/articles/10.1186/1477-7819-12-130. ISSN: 1477-7819; PMID: 24773914.
  172. Dietary vitamin A intake and breast cancer risk among African American women: The AMBER Consortium. Cheng, Ting-Yuan D., et al., et al. [ed.] George C. Prendergast. 15, Wynnewood: American Association for Cancer Research, August 2015, Cancer Research, Vol. 75, p. Abstract 1878. DOI: 10.1158/1538-7445.AM2015-1878; http://cancerres.aacrjournals.org/content/75/15_Supplement/1878. ISSN: 0008-5472.
  173. Vitamin A and risk of cervical cancer: A meta-analysis. Zhang, Xingliang, et al., et al. [ed.] Beth Y. Karlan. 2, West Hollywood: Elsevier B.V., February 2012, Gynecologic Oncology, Vol. 124, pp. 366-373. DOI: 10.1016/j.ygyno.2011.10.012; http://www.gynecologiconcology-online.net/article/S0090-8258(11)00854-7/fulltext. ISSN: 0090-8258; PMID: 22005522.
  174. Hepatic Vitamin A Preloading Reduces Colorectal Cancer Metastatic Multiplicity in a Mouse Xenograft Model. Park, Eun Young, et al., et al. [ed.] Leonard A. Cohen. 5, Valhalla: Taylor and Francis Group, LLC, May 29, 2012, Nutrition and Cancer, Vol. 64, pp. 732-740. DOI: 10.1080/01635581.2012.687425; http://www.tandfonline.com/doi/abs/10.1080/01635581.2012.687425. ISSN: 0163-5581; PMCID: PMC3829719.
  175. Effects of Pre- and Post-Administration of Vitamin A on the Growth of Refractory Cancers in Xenograft Mice. Li, Chuan, et al., et al. [ed.] Naoto Oku. 4, Shizuoka: International Academic Printing Co., Ltd.: The Pharmaceutical Society of Japan, April 1, 2017, Biological and Pharmaceutical Bulletin, Vol. 40, pp. 486-494. DOI: 10.1248/bpb.b16-00933; https://www.jstage.jst.go.jp/article/bpb/40/4/40_b16-00933/_article. ISSN: 0918-6158; PMID: 28100867.
  176. Association between vitamin A, retinol intake and blood retinol level and gastric cancer risk: A meta-analysis. Wu, Yihua, et al., et al. [ed.] Nicolaas E.P. Deutz. 4, College Station: Elsevier Ltd., August 2015, Clinical Nutrition, Vol. 34, pp. 620-626. DOI: 10.1016/j.clnu.2014.06.007; http://www.clinicalnutritionjournal.com/article/S0261-5614(14)00171-X/fulltext. ISSN: 0261-5614; PMID: 25008141.
  177. Investigation of the Growth and Metastasis of Malignant Melanoma in a Murine Model: The Role of Supplemental Vitamin A. Weinzweig, Jeffrey, et al., et al. [ed.] Robert Malcolm Goldwyn. 1, Brookline: American Society of Plastic Surgeons; Wolters Kluwer Health, Inc., July 2003, Plastic & Reconstructive Surgery®, Vol. 112, pp. 152-158. DOI: 10.1097/01.PRS.0000066008.40176.EF; http://journals.lww.com/plasreconsurg/pages/articleviewer.aspx?year=2003&issue=07000&article=00022&type=abstract. ISSN: 0032-1052; PMID: 12832888.
  178. Randomized Phase II Trial of All-Trans-Retinoic Acid With Chemotherapy Based on Paclitaxel and Cisplatin As First-Line Treatment in Patients With Advanced Non-Small-Cell Lung Cancer. Arrieta, Oscar, et al., et al. [ed.] Daniel G. Haller. 21, Philadelphia: American Society of Clinical Oncology, July 2010, Journal of Clinical Oncology, Vol. 28, pp. 3463-3471. DOI: 10.1200/JCO.2009.26.6452; http://ascopubs.org/doi/10.1200/JCO.2009.26.6452. ISSN: 0732-183X; PMID: 20547984.
  179. Influence of different cooking methods on color, bioactive compounds, and antioxidant activity of kale. Akdaş, Zelal Zuhal and Bakkalbaşı, Emre. [ed.] Shafiur Rahman. 4, Muscat: Informa UK Limited; Taylor & Francis Group, June 16, 2017, International Journal of Food Properties, Vol. 20, pp. 877-887. DOI: 10.1080/10942912.2016.1188308; http://www.tandfonline.com/doi/full/10.1080/10942912.2016.1188308. ISSN: 1094-2912.
  180. Vitamin C and survival among women with breast cancer: A Meta-analysis. Harris, Holly R., Orsini, Nicola and Wolk, Alicja. [ed.] Alexander M.M. Eggermont. 7, Oxford: Elsevier Ltd., May 2014, European Journal of Cancer, Vol. 50, pp. 1223-1231. DOI: 10.1016/j.ejca.2014.02.013; http://www.ejcancer.com/article/S0959-8049(14)00175-0/fulltext. ISSN: 0959-8049; PMID: 24613622.
  181. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Aguilera, Oscar, et al., et al. [ed.] Andrei V. Gudkov and Mikhail V. Blagosklonny. 30, Buffalo: Impact Journals, LLC, June 15, 2016, Oncotarget, Vol. 7, pp. 47954-47965. DOI: 10.18632/oncotarget.10087; http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path[]=10087&path[]=33351. eISSN: 1949-2553; PMCID: PMC5216991.
  182. Natural vitamin C intake and the risk of head and neck cancer: A pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Edefonti, Valeria, et al., et al. [ed.] Peter Lichter. 2, DKFZ, Germany: John Wiley & Sons, Inc.: UICC, July 15, 2015, International Journal of Cancer, Vol. 137, pp. 448-462. DOI: 10.1002/ijc.29388; http://onlinelibrary.wiley.com/doi/10.1002/ijc.29388/abstract. ISSN: 1097-0215; PMID: 25627906.
  183. Inverse Association between Dietary Intake of Selected Carotenoids and Vitamin C and Risk of Lung Cancer. Shareck, Martine, et al., et al. [ed.] Paolo Boffetta and Mathieu Boniol. 23, New York; Lyon: Frontiers Media S.A., February 28, 2017, Frontiers in Oncology: Cancer Epidemiology and Prevention, Vol. 7. DOI: 10.3389/fonc.2017.00023; http://journal.frontiersin.org/article/10.3389/fonc.2017.00023/full. ISSN: 2234-943X; PMCID: PMC5328985.
  184. High-Dose Parenteral Ascorbate Enhanced Chemosensitivity of Ovarian Cancer and Reduced Toxicity of Chemotherapy. Ma, Yan, et al., et al. [ed.] Marcia McNutt. 222, Washington, DC: American Association for the Advancement of Science, February 5, 2014, Science Translational Medicine, Vol. 6, p. 222ra18. DOI: 10.1126/scitranslmed.3007154; http://stm.sciencemag.org/content/6/222/222ra18. ISSN: 1946-6234; PMID: 24500406.
  185. Association between vitamin C intake and the risk of pancreatic cancer: a meta-analysis of observational studies. Fan, Hua, et al., et al. [ed.] Philip Campbell. 13973, London: Macmillan Publishers Limited, part of Springer Nature, September 11, 2015, Scientific Reports, Vol. 5. DOI: 10.1038/srep13973; http://www.nature.com/articles/srep13973. ISSN: 2045-2322; PMID: 26360104.
  186. Association between Dietary Vitamin C Intake and Risk of Prostate Cancer: A Meta-analysis Involving 103,658 Subjects. Bai, Xiao-Yan, et al., et al. [ed.] Yan-Gao Man and Naoto T. Ueno. 9, Baltimore; Houston: Ivyspring International Publisher, July 28, 2015, Journal of Cancer, Vol. 6, pp. 913-921. DOI: 10.7150/jca.12162; http://www.jcancer.org/v06p0913.htm. ISSN: 1837-9664; PMID: 26284143.
  187. Reticulum Cell Sarcoma: Two Complete 'Spontaneous' Regressions, in Reponse to High-Dose Ascorbic Acid Therapy. Campbell, A., Jack, T. and Cameron, E. [ed.] M. Markman. 6, Houston: S. Karger AG, Basel, 1991, Oncology: International Journal of Cancer Research and Treatment, Vol. 48, pp. 495-497. DOI: 10.1159/000226988; http://www.karger.com/?doi=10.1159/000226988. ISSN: 0030-2414; PMID: 1749589.
  188. Ascorbic acid, but not dehydroascorbic acid increases intracellular vitamin C content to decrease Hypoxia Inducible Factor -1 alpha activity and reduce malignant potential in human melanoma. Fischer, Adam P. and Miles, Sarah L. [ed.] D.M. Townsend. Charleston: Elsevier Masson SAS, February 2017, Biomedicine & Pharmacotherapy, Vol. 86, pp. 502-513. DOI: 10.1016/j.biopha.2016.12.056; http://www.sciencedirect.com/science/article/pii/S0753332216313555?via%3Dihub. ISSN: 0753-3322; PMID: 28012930.
  189. Vitamin C induces apoptosis in AGS cells via production of ROS of mitochondria. Lim, Jae Young, et al., et al. [ed.] Demetrios A. Spandidos. 5, Athens: Spandidos Publications, September 29, 2016, Oncology Letters, Vol. 12, pp. 4270-4276. DOI: 10.3892/ol.2016.5212; https://www.spandidos-publications.com/10.3892/ol.2016.5212. ISSN: 1792-1074; PMID: 27895802.
  190. Association between zinc intake and risk of digestive tract cancers: A systematic review and meta-analysis. Li, Peiwei, et al., et al. [ed.] Nicolaas E.P. Deutz. 3, College Station: Elsevier Ltd., June 2014, Clinical Nutrition, Vol. 33, pp. 415-420. DOI: 10.1016/j.clnu.2013.10.001; http://www.clinicalnutritionjournal.com/article/S0261-5614(13)00260-4/fulltext. ISSN: 0261-5614; PMID: 24148607.
  191. Zinc supplementation in children and adolescents with acute leukemia. Consolo, L.Z.Z., et al., et al. [ed.] Manfred James Müller. Kiel: Nature Publishing Group, October 2013, European Journal of Clinical Nutrition, Vol. 67, pp. 1056-1059. DOI: 10.1038/ejcn.2013.146; http://www.nature.com/ejcn/journal/v67/n10/full/ejcn2013146a.html. ISSN: 0954-3007; PMID: 23963274.
  192. The status of zinc in the development of hepatocellular cancer: An important, but neglected, clinically established relationship. Costello, Leslie C. and Franklin, Renty B. [ed.] Wafik S. El-Deiry. 4, Philadelphia: Landes Bioscience, January 21, 2014, Cancer Biology & Therapy, Vol. 15, pp. 353-360. DOI: 10.4161/cbt.27633 ; http://www.tandfonline.com/doi/abs/10.4161/cbt.27633. ISSN: 1538-4047; PMID: 24448510.
  193. Zinc suppresses stem cell properties of lung cancer cells through protein kinase C-mediated β-catenin degradation. Ninsontia, Chuanpit, et al., et al. [ed.] Josephine C. Adams. 4, Bristol: American Physiological Society, April 7, 2017, American Journal of Physiology - Cell Physiology®, Vol. 312, pp. C487-C499. DOI: 10.1152/ajpcell.00173.2016; http://ajpcell.physiology.org/content/312/4/C487. ISSN: 0363-6143; PMID: 28122729.
  194. Zinc and metallothionen in prostate cancer: A review. Rodrigo, Miguel Angel Merlos, et al., et al. [ed.] Ondrej Zitka. 2, Brno: Mendelova univerzita v Brně, July 1, 2015, Journal of Metallomics and Nanotechnologies, Vol. 2, pp. 58-63. ISSN: 2336-3940.
  195. Zinc Supplement Use and Risk of Prostate Cancer. Leitzmann, Michael F., et al., et al. [ed.] Barnett S. Kramer. 13, Rockville: Oxford University Press, July 2, 2003, Journal of the National Cancer Institute, Vol. 95, pp. 1004-1007. DOI: 10.1093/jnci/95.13.1004; https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/95.13.1004. ISSN: 0027-8874; PMID: 12837837.
  196. (E)-2-Hexenal-Induced DNA Damage and Formation of Cyclic 1,N2-(1,3-Propano)-2'-deoxyguanosine Adducts in Mammalian Cells. Gölzer, Petra, et al., et al. [ed.] Lawrence J. Marnett. 7, Nashville: American Chemical Society, October 15, 1996, Chemical Research in Toxicology, Vol. 9, pp. 1207-1213. DOI: 10.1021/tx9600107; http://pubs.acs.org/doi/abs/10.1021/tx9600107. ISSN: 0893-228X.
  197. Age-related macular degeneration: Effects of a short-term intervention with an oleaginous kale extract--a pilot study. Arnold, Christin, et al., et al. [ed.] Michael M. Meguid. 11-12, Syracuse: Elsevier Inc., November-December 2013, Nutrition, Vol. 29, pp. 1412-1417. DOI: 10.1016/j.nut.2013.05.012; http://www.nutritionjrnl.com/article/S0899-9007(13)00270-0/fulltext. ISSN: 0899-9007; PMID: 24103519.
  198. Lutein, Zeaxanthin and Meso-zeaxanthin Supplementation Associated with Macular Pigment Optical Density. Ma, Le, et al., et al. [ed.] Peter Howe and Jonathan Buckley. 7, Callaghan; Adelaide: MDPI AG, July 12, 2016, Nutrients, Vol. 8, p. 426. DOI: 10.3390/nu8070426; http://www.mdpi.com/2072-6643/8/7/426. ISSN: 2072-6643; PMID: 27420092.
  199. Acute reduction of serum 8-iso-PGF2-alpha and advanced oxidation protein products in vivo by a polyphenol-rich beverage; a pilot clinical study with phytochemical and in vitro antioxidant characterization. Nemzer, Boris V., et al., et al. [ed.] Nehme Gabriel. 67, Leesburg: BioMed Central Ltd, June 15, 2011, Nutrition Journal, Vol. 10. DOI: 10.1186/1475-2891-10-67; https://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-10-67. ISSN: 1475-2891; PMCID: PMC3141640.
  200. Neuroprotective effect of sinapic acid in a mouse model of amyloid β1-42 protein-induced Alzheimer's disease. Lee, Hyung Eun, et al., et al. [ed.] George F. Koob. 2, La Jolla: Elsevier Inc., December 2012, Pharmacology Biochemistry and Behavior, Vol. 103, pp. 260-266. DOI: 10.1016/j.pbb.2012.08.015; http://www.sciencedirect.com/science/article/pii/S0091305712002365?via%3Dihub. ISSN: 0091-3057; PMID: 22971592.
  201. Intake of kale suppresses postprandial increases in plasma glucose: A randomized, double-blind, placebo-controlled, crossover study. Kondo, Sumio, et al., et al. [ed.] Demetrios A. Spandidos. 5, Athens: Spandidos Publications, November 2016, Biomedical Reports, Vol. 5, pp. 553-558. DOI: 10.3892/br.2016.767; https://www.spandidos-publications.com/br/5/5/553. ISSN: 2049-9434; PMID: 27882216.
  202. Kale Juice Improves Coronary Artery Disease Risk Factors in Hypercholesterolemic Men. Kim, Soo Yeon, et al., et al. [ed.] Chun-ming Chen. 2, Beijing: Elsevier (Singapore) Pte. Ltd., February 2008, Biomedical and Environmental Sciences, Vol. 21, pp. 91-97. DOI: 10.1016/S0895-3988(08)60012-4; http://www.sciencedirect.com/science/article/pii/S0895398808600124?via%3Dihub. ISSN: 0895-3988; PMID: 18548846.
  203. Effects of bioactive-rich extracts of pomegranate, persimmon, nettle, dill, kale and Sideritis and isolated bioactives on arachidonic acid induced markers of platelet activation and aggregation. Konić-Ristić, Aleksandra, et al., et al. [ed.] Mark Shepherd and Andrew Waterhouse. 14, Hamilton; London: John Wiley & Sons, Inc.: Society of Chemical Industry, November 2013, Journal of the Science of Food and Agriculture, Vol. 93, pp. 3581-3587. DOI: 10.1002/jsfa.6328; http://onlinelibrary.wiley.com/doi/10.1002/jsfa.6328/abstract. eISSN: 1097-0010; PMID: 23900938.
  204. The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients. Han, Jeong-Hwa, et al., et al. [ed.] Jayong Chung and Young-Ran Heo. 1, Seoul; Gwangju: Korean Nutrition Society; Korean Society of Community Nutrition, February 2015, Nutrition Research and Practice, Vol. 9, p. 4956. DOI: 10.4162/nrp.2015.9.1.4; https://synapse.koreamed.org/DOIx.php?id=10.4162/nrp.2015.9.1.49. ISSN: 1976-1457; PMID: 25671068.
  205. Influences of Orally Taken Carotenoid-Rich Curly Kale Extract on Collagen I/Elastin Index of the Skin. Meinke, Martina C., et al., et al. [ed.] Peter Howe and Jonathan Buckley. 7, Callaghan; Adelaide: MDPI AG, July 19, 2017, Nutrients, Vol. 9, p. 775. DOI: 10.3390/nu9070775; http://www.mdpi.com/2072-6643/9/7/775. ISSN: 2072-6643; PMID: 28753935.
  206. Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Cieślik, Ewa, et al., et al. [ed.] Gordon G. Birch. 3, Reading: Elsevier Ltd., 2007, Food Chemistry, Vol. 105, pp. 976-981. DOI: 10.1016/j.foodchem.2007.04.047; http://www.sciencedirect.com/science/article/pii/S0308814607004049?via%3Dihub. ISSN: 0308-8146.
  207. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Song, Lijiang and Thornalley, Paul J. [ed.] Joseph F. Borzelleca and Alan R. Boobis. 2, Richmond; London: Elsevier Ltd., February 2007, Food and Chemical Toxicology, Vol. 45, pp. 216-224. DOI: 10.1016/j.fct.2006.07.021; http://www.sciencedirect.com/science/article/pii/S0278691506002304. ISSN: 0278-6915; PMID: 17011103.
  208. IARC Working Group on the Evaluation of Cancer-Preventive Strategies. Definitions and classifications for fruit and vegetables. IARC Handbook of Cancer Prevention: Fruit and Vegetables. Lyon: World Health Organization; International Agency for Research on Cancer, 2003, Vol. Volume 8, 1, pp. 1-19. ISBN: 92-832-3008-6.
  209. Toxicogenetic study of Persea americana fruit pulp oil and its effect on genomic instability. Nicolella, Heloiza Diniz, et al., et al. [ed.] José L. Domingo. Catalonia: Elsevier Inc., March 2017, Food and Chemical Toxicology, Vol. 101, pp. 114-120. DOI: 10.1016/j.fct.2017.01.009; http://www.sciencedirect.com/science/article/pii/S0278691517300091?via%3Dihub. ISSN: 0278-6915; PMID: 28088491.
  210. Acute Toxicity and Genotoxic Activity of Avocado Seed Extract (Persea americana Mill., c.v. Hass). Padilla-Camberos, Eduardo, et al., et al. [ed.] D. Matthopoulos and I.V. Sharakhov. Article ID 245828, Athens; Blacksburg: Hindawi Publishing Corporation, September 23, 2013, The Scientific World Journal, Vol. 2013, pp. 1-4. DOI: 10.1155/2013/245828; https://www.hindawi.com/journals/tswj/2013/245828/. ISSN: 1537-744X; PMID: 24298206.
  211. Avocado fruit (Persea americana Mill) exhibits chemo-protective potentiality against cyclophosphamide induced genotoxicity in human lymphocyte culture. Paul, Rajkumar, Kulkarni, Paresh and Ganesh, Narayan. [ed.] Dominic Fan. 3, Houston: Old City Publishing, Inc., June 28, 2011, Journal of Experimental Therapeutics and Oncology, Vol. 9, pp. 221-230. ISSN: 1533-869X; PMID: 22070054.
  212. In vitro cytotoxic and antioxidant activities of some plant extracts on different human cancer cell lines. Khalifa, Noha S., et al., et al. [ed.] Foad Afify. 1, Cairo: The Egyptian Society of Experimental Biology, 2013, The Egyptian Journal Of Experimental Biology (Botany), Vol. 9, pp. 137-144. ISSN: 1687-7497.
  213. Evaluating the effect of four extracts of avocado fruit on esophageal squamous carcinoma and colon adenocarcinoma cell lines in comparison with peripheral blood mononuclear cells. Larijani, Laleh Vahedi, et al., et al. [ed.] Ahmad Reza Dehpour. 3, Tehran: Tehran University of Medical Sciences, 2014, Acta Medica Iranica, Vol. 52, pp. 201-205. ISSN:0044-6025.
  214. Pro-apoptotic effect of Persea americana var. Hass (avocado) on Jurkat lymphoblastic leukemia cells. Bonilla-Porras, Angelica R., et al., et al. [ed.] John M. Pezzuto. 4, Brooklyn: Informa: Taylor & Francis Group, November 5, 2014, Pharmaceutical Biology, Vol. 52, pp. 458-465. DOI: 10.3109/13880209.2013.842599; http://www.tandfonline.com/doi/full/10.3109/13880209.2013.842599. ISSN: 1388-0209; PMID: 24188375.
  215. Selective Induction of Apoptosis of Human Oral Cancer Cell Lines by Avocado Extracts Via a ROS-Mediated Mechanism. Ding, Haiming, et al., et al. [ed.] Leonard A. Cohen. 3, Valhalla: Taylor and Francis Group, LLC, April 16, 2009, Nutrition and Cancer, Vol. 61, pp. 348-356. DOI: 10.1080/01635580802567158; http://www.tandfonline.com/doi/abs/10.1080/01635580802567158. ISSN: 0163-5581; PMID: 19373608.
  216. Inhibition of prostate cancer cell growth by an avocado extract: role of lipid-soluble bioactive substances. Lu, Qing-Yi, et al., et al. [ed.] Bernhard Hennig. 1, Lexington: Elsevier Inc., January 2005, The Journal of Nutritional Biochemistry, Vol. 16, pp. 23-30. DOI: 10.1016/j.jnutbio.2004.08.003; http://linkinghub.elsevier.com/retrieve/pii/S0955286304001597. ISSN: 0955-2863; PMID: 15629237.
  217. Anti-Helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. Castillo-Juárez, Israel, et al., et al. [ed.] Robert Verpoorte. 2, Leiden: Elsevier Ireland Ltd., March 18, 2009, Journal of Ethnopharmacology, Vol. 122, pp. 402-405. DOI: 10.1016/j.jep.2008.12.021; http://www.sciencedirect.com/science/article/pii/S0378874108007277?via%3Dihub. ISSN: 0378-8741; PMID: 19162157.
  218. Molecular targets of dietary agents for prevention and therapy of cancer. Aggarwal, Bharat B. and Shishodia, Shishir. [ed.] Sam J. Enna. 10, Kansas City: Elsevier Inc., May 14, 2006, Biochemical Pharmacology, Vol. 71, pp. 1397-1421. DOI: 10.1016/j.bcp.2006.02.009; http://www.sciencedirect.com/science/article/pii/S0006295206000955. ISSN: 0006-2952; PMID: 16563357.
  219. Edible Cold Pressed Oils and Their Biologically Active Components. Boskou, Dimitrios. [ed.] Feyzullah Tokay. 1, Balikesir: OMICS International, March 26, 2017, Journal of Experimental Food Chemistry, Vol. 3, p. e108. DOI: 10.4172/2472-0542.1000e108; https://www.omicsonline.org/open-access/edible-cold-pressed-oils-and-their-biologically-active-components-2472-0542-1000e108.php?aid=86762. ISSN: 2472-0542.
  220. Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats. Ortiz-Avila, Omar, et al., et al. [ed.] Daniel M. Raben. 4, Baltimore: Springer Science+Business Media, August 2015, Journal of Bioenergetics and Biomembranes, Vol. 47, pp. 337-353. DOI: 10.1007/s10863-015-9614-z; https://link.springer.com/article/10.1007%2Fs10863-015-9614-z. ISSN: 0145-479X; PMID: 26060181.
  221. Characterization of the 9-Cis-Epoxycarotenoid Dioxygenase Gene Family and the Regulation of Abscisic Acid Biosynthesis in Avocado. Chernys, Jacqueline T. and Zeevaart, Jan A.D. [ed.] Maarten Chrispeels. 1, San Diego: American Society of Plant Physiologists, September 2000, Plant Physiology®, Vol. 124, pp. 343-354. DOI: 10.1104/pp.124.1.343; http://www.plantphysiol.org/content/124/1/343. ISSN: 1532-2548; PMCID: PMC59148.
  222. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway. Zhou, Nan, et al., et al. [ed.] Peter Lichter. 8, DKFZ, Germany: John Wiley & Sons, Inc.: UICC, April 15, 2016, International Journal of Cancer, Vol. 138, pp. 1947-1958. DOI: 10.1002/ijc.29935; http://onlinelibrary.wiley.com/doi/10.1002/ijc.29935/abstract. ISSN: 1097-0215; PMID: 26594836.
  223. Abscisic acid inhibits proliferation of human hepatocarcinoma cells. Lu, Yong-gang, et al., et al. [ed.] Chen Mengqin. Beijing: Beijing Institute of Physiology, April 2008, Basic & Clinical Medicine. ISSN: 1001-6325.
  224. Effect of abscisic acid induced autophagy on lung adenocarcinoma cell line spc-A1 in vitro. Lijie, Shao, Zifeng, Jiang and Rongyu, Liu. [ed.] Zhang Xuejun. Hefei: Anhui Medical University, April 2012, Acta Universitatis Medicinalis Anhui. ISSN: 1000-1492.
  225. Effect on induction of differentiation of Tca8113 cells affected by abscisic acid in vitro. Zhao, H.W., et al., et al. [ed.] Zhou Xuedong. 5, Chengdu: Sichuan University, October 1, 2007, West China Journal of Stomatology, Vol. 25, pp. 508-512. ISSN: 1000-1182; PMID: 18072573.
  226. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway. D'Ambrosio, Steven M., et al., et al. [ed.] William J. Lennarz. 3, Baltimore: Academic Press, June 10, 2011, Biochemical and Biophysical Research Communications, Vol. 409, pp. 465-469. DOI: 10.1016/j.bbrc.2011.05.027; http://www.sciencedirect.com/science/article/pii/S0006291X11007807?via%3Dihub. ISSN: 0006-291X; PMID: 21596018.
  227. Targeting Mitochondria with Avocatin B Induces Selective Leukemia Cell Death. Lee, Eric A., et al., et al. [ed.] George C. Prendergast. 12, Wynnewood: American Association for Cancer Research, June 15, 2015, Cancer Research, Vol. 75, pp. 2478-2488. DOI: 10.1158/0008-5472.CAN-14-2676; http://cancerres.aacrjournals.org/content/75/12/2478. ISSN: 0008-5472; PMID: 26077472.
  228. Antimetastatic Effects of α-Carotene and Possible Mechanisms of Action in Human Hepatocarcinoma SK-Hep-1 Cells. Chen, Huei-Yan, et al., et al. [ed.] James N. Seiber. 43, Davis: American Chemical Society, October 17, 2013, Journal of Agricultural and Food Chemistry, Vol. 61, pp. 10368-10376. DOI: 10.1021/jf4033393; http://pubs.acs.org/doi/abs/10.1021/jf4033393. ISSN: 0021-8561; PMID: 24131318.
  229. β-Carotene inhibits neuroblastoma cell invasion and metastasis in vitro and in vivo by decreasing level of hypoxia-inducible factor-1α. Kim, Yoo-Sun, et al., et al. [ed.] Bernhard Hennig. 6, Lexington: Elsevier Inc., June 2014, The Journal of Nutritional Biochemistry, Vol. 25, pp. 655-664. DOI: 10.1016/j.jnutbio.2014.02.006; http://www.sciencedirect.com/science/article/pii/S095528631400045X?via%3Dihub. ISSN: 0955-2863; PMID: 24746828.
  230. β-Carotene synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal squamous cell carcinoma in vivo and in vitro. Zhang, Yanting, et al., et al. [ed.] W. Dekant. Würzburg: Elsevier Ireland Ltd., November 2, 2016, Toxicology Letters, Vol. 261, pp. 49-58. DOI: 10.1016/j.toxlet.2016.08.010; http://www.sciencedirect.com/science/article/pii/S0378427416330983?via%3Dihub. ISSN: 0378-4274; PMID: 27586268.
  231. β-Cryptoxanthin Synergistically Enhances the Antitumoral Activity of Oxaliplatin through ΔNP73 Negative Regulation in Colon Cancer. Millán, Coral San, et al., et al. [ed.] Kenneth C. Anderson. 19, Philadelphia: American Association for Cancer Research, October 2015, Clinical Cancer Research, Vol. 21, pp. 4398-4409. DOI: 10.1158/1078-0432.CCR-14-2027; http://clincancerres.aacrjournals.org/content/21/19/4398. ISSN: 1078-0432; PMID: 26023082.
  232. β-Cryptoxanthin Reduced Lung Tumor Multiplicity and Inhibited Lung Cancer Cell Motility by Downregulating Nicotinic Acetylcholine Receptor α7 Signaling. Iskandar, Anita R., et al., et al. [ed.] Scott M. Lippman. 11, Philadelphia: American Association for Cancer Research, November 2016, Cancer Prevention Research, Vol. 9, pp. 875-886. DOI: 10.1158/1940-6207.CAPR-16-0161; http://cancerpreventionresearch.aacrjournals.org/content/9/11/875. ISSN: 1940-6207; PMID: 27623933.
  233. Beta-Sitosterol: A Promising but Orphan Nutraceutical to Fight Against Cancer. Sayeed, Muhammad Shahdaat Bin and Ameen, Syeda Sadia. [ed.] Leonard A. Cohen. 8, Valhalla: Taylor and Francis Group, LLC, October 16, 2015, Nutrition and Cancer, Vol. 67, pp. 1214-1220. DOI: 10.1080/01635581.2015.1087042; http://www.tandfonline.com/doi/full/10.1080/01635581.2015.1087042. ISSN: 0163-5581; PMID: 26473555.
  234. BMET-34 Drug repurposing discovers beta-sitosterol as an effective therapeutic agent against melanoma brain metastases in vivo. Sundstrøm, Terje, et al., et al. [ed.] Linda M. Liau. Suppl 5, Los Angeles: Springer Science+Business Media, November 1, 2015, Journal of Neuro-Oncology, Vol. 17, p. v52. DOI: 10.1093/neuonc/nov208.34; https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/nov208.34. ISSN: 0167-594X; PMCID: PMC4638636.
  235. Blockage of TGFβ-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo. Li, Yuan, et al., et al. [ed.] Seamus Martin. 1, Cambridge: John Wiley & Sons, Inc.: Federation of European Biochemical Societies, January 1, 2015, FEBS Journal, Vol. 5, pp. 466-475. DOI: 10.1016/j.fob.2015.05.009; http://onlinelibrary.wiley.com/doi/10.1016/j.fob.2015.05.009/abstract. eISSN: 1742-4658; PMID: 26106521.
  236. Caffeic Acid Expands Anti-Tumor Effect of Metformin in Human Metastatic Cervical Carcinoma HTB-34 Cells: Implications of AMPK Activation and Impairment of Fatty Acids De Novo Biosynthesis. Tyszka-Czochara, Malgorzata, Konieczny, Pawel and Majka, Marcin. [ed.] Maurizio Battino. 2, Ancona: MDPI AG, February 21, 2017, International Journal of Molecular Sciences, Vol. 18, p. E462. DOI: 10.3390/ijms18020462; http://www.mdpi.com/1422-0067/18/2/462. eISSN: 1422-0067; PMID: 28230778.
  237. Metabolic and microbial signatures in rat hepatocellular carcinoma treated with caffeic acid and chlorogenic acid. Zhang, Zhan, et al., et al. [ed.] Suzanne Farley. London: Macmillan Publishers Limited, part of Springer Nature, July 3, 2017, Scientific Reports, Vol. 7, p. Article number: 4508. DOI: 10.1038/s41598-017-04888-y; http://www.nature.com/articles/s41598-017-04888-y. ISSN: 2045-2322; PMCID: PMC5495756.
  238. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Bouzaiene, Nouha Nasr, et al., et al. [ed.] F.P. Nijkamp and W.H. Gispen. Utrecht: Elsevier B.V., November 5, 2015, European Journal of Pharmacology, Vol. 766, pp. 99-105. DOI: 10.1016/j.ejphar.2015.09.044; http://www.sciencedirect.com/science/article/pii/S0014299915302764?via%3Dihub. ISSN: 0014-2999; PMID: 26432689.
  239. The timing of caffeic acid treatment with cisplatin determines sensitization or resistance of ovarian carcinoma cell lines. Sirota, R., Gibson, D. and Kohen, R. [ed.] T. Grune and C.G. Kevil. Nuthetal; Shreveport: Elsevier B.V., April 2017, Redox Biology, Vol. 11, pp. 170-175. DOI: 10.1016/j.redox.2016.12.006; http://www.sciencedirect.com/science/article/pii/S2213231716303676?via%3Dihub. ISSN: 2213-2317; PMID: 27951496.
  240. Caffeic Acid Directly Targets ERK1/2 to Attenuate Solar UV-Induced Skin Carcinogenesis. Yang, Ge, et al., et al. [ed.] Scott M. Lippman. 10, Philadelphia: American Association for Cancer Research, October 2014, Cancer Prevention Research, Vol. 7, pp. 1056-1066. DOI: 10.1158/1940-6207.CAPR-14-0141; http://cancerpreventionresearch.aacrjournals.org/content/7/10/1056. ISSN: 1940-6207; PMID: 25104643.
  241. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Xue, Nina, et al., et al. [ed.] Suzanne Farley. London: Macmillan Publishers Limited, part of Springer Nature, January 3, 2017, Scientific Reports, Vol. 7, p. Article number: 39011. DOI: 10.1038/srep39011; http://www.nature.com/articles/srep39011. ISSN: 2045-2322; PMID: 28045028.
  242. Evidence of PKC Binding and Translocation to Explain the Anticancer Mechanism of Chlorogenic Acid in Breast Cancer Cells. Deka, S.J., et al., et al. [ed.] David W. Li. 1, Guangzhou: Bentham Science Publishers, January 2017, Current Molecular Medicine, Vol. 17, pp. 79-89. DOI: 10.2174/1566524017666170209160619; http://www.eurekaselect.com/149982/article. ISSN: 1566-5240; PMID: 28190385.
  243. Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Hou, Ni, et al., et al. [ed.] Mels Sluyser. 1, Amsterdam: Lippincott Williams & Wilkins; Wolters Kluwer Health, Inc., January 2017, Anti-Cancer Drugs, Vol. 28, pp. 59-65. DOI: 10.1097/CAD.0000000000000430; http://journals.lww.com/anti-cancerdrugs/pages/articleviewer.aspx?year=2017&issue=01000&article=00006&type=abstract. ISSN: 0959-4973; PMID: 27603595.
  244. Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL 60 cells. Liu, Ya Jing, et al., et al. [ed.] Demetrios A. Spandidos. 4, Athens: Spandidos Publications, October 2013, Molecular Medicine Reports, Vol. 8, pp. 1106-1110. DOI: 10.3892/mmr.2013.1652; https://www.spandidos-publications.com/. ISSN: 1791-2997; PMID: 23982123.
  245. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Yamagata, Kazuo, et al., et al. [ed.] Naranjan S. Dhalla. Winnipeg: Springer Science+Business Media, September 5, 2017, Molecular and Cellular Biochemistry, Vol. Epub ahead of print, pp. 1-11. DOI: 1007/s11010-017-3171-1; https://link.springer.com/article/10.1007%2Fs11010-017-3171-1. ISSN: 0300-8177; PMID: 28875417.
  246. Sphingosine Kinase-1 Involves the Inhibitory Action of HIF-1α by Chlorogenic Acid in Hypoxic DU145 Cells. Lee, Myoung-Sun, et al., et al. [ed.] Maurizio Battino. 2, Ancona: MDPI AG, February 4, 2017, International Journal of Molecular Sciences, Vol. 18, p. E325. DOI: 10.3390/ijms18020325; http://www.mdpi.com/1422-0067/18/2/325. eISSN: 1422-0067; PMID: 28165392.
  247. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes. Cha, Ji Won, et al., et al. [ed.] Minsoo Noh. 2, Seoul: The Korean Society of Applied Pharmacology, March 2014, Biomolecules & Therapeutics, Vol. 22, pp. 136-142. DOI: 10.4062/biomolther.2014.006; http://www.biomolther.org/journal/view.html?volume=22&number=2&spage=136&year=2014. ISSN: 1976-9148; PMCID: PMC3975475.
  248. The modulating effect of Persea americana fruit extract on the level of expression of fatty acid synthase complex, lipoprotein lipase, fibroblast growth factor-21 and leptin - A biochemical study in rats subjected to experimental hyperlipidemia and. Monika, Padmanabhan and Geetha, Arumugam. [ed.] Hildebert Wagner. 10, Vallberga: Elsevier GmbH: Urban and Fischer, September 15, 2015, Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, Vol. 22, pp. 939-945. DOI: 10.1016/j.phymed.2015.07.001; http://www.sciencedirect.com/science/article/pii/S0944711315002159?via%3Dihub. ISSN: 0944-7113; PMID: 26321743; and obesity.
  249. Ellagic Acid Inhibits Bladder Cancer Invasiveness and In Vivo Tumor Growth. Ceci, Claudia, et al., et al. [ed.] Peter Howe and Jonathan Buckley. 11, Callaghan; Adelaide: MDPI AG, November 22, 2016, Nutrients, Vol. 8, p. 744. DOI: 10.3390/nu8110744; http://www.mdpi.com/2072-6643/8/11/744. ISSN: 2072-6643; PMID: 27879653.
  250. Effect of ellagic acid on the expression of human telomerase reverse transcriptase (hTERT) α+β+ transcript in estrogen receptor-positive MCF-7 breast cancer cells. Strati, Areti, et al., et al. [ed.] Edgard E. Delvin. 13-14, Montréal: Elsevier Inc.; The Canadian Society of Clinical Chemists, September 2009, Clinical Biochemistry, Vol. 42, pp. 1358-1362. DOI: 10.1016/j.clinbiochem.2009.05.017; http://www.sciencedirect.com/science/article/pii/S0009912009002495?via%3Dihub. ISSN: 0009-9120; PMID: 19501078.
  251. Inhibition of Cervical Cancer by Promoting IGFBP7 Expression Using Ellagic Acid from Pomegranate Peel. Guo, Hongjun, Zhang, Dongya and Fu, Qingrui. [ed.] George B. Stefano. Old Westbury: International Scientific Information, Inc., December 12, 2016, Medical Science Monitor, Vol. 22, pp. 4881-4886. DOI: 10.12659/MSM.898658; https://www.medscimonit.com/abstract/index/idArt/898658. eISSN: 1643-3750; PMCID: PMC5158133.
  252. Benefits of ellagic acid from grapes and pomegranates against colorectal cancer. Mirsane, Sayedalireza and Mirsane, Sayedmojtaba. [ed.] Reza Ghadimi. 3, Babol: Babol University of Medical Sciences, July 1, 2017, Caspian Journal of Internal Medicine, Vol. 8, pp. 226-227. DOI: 10.22088/cjim.8.3.226; http://caspjim.com/article-1-843-en.html. ISSN: 2008-6164; PMID: 28932378.
  253. Punicalagin and Ellagic Acid Demonstrate Antimutagenic Activity and Inhibition of Benzo[a]pyrene Induced DNA AdductsZahin, Maryam, et al., et al. [ed.] Davor Zeljezic. Article ID 467465, Zagreb: Hindawi Publishing Corporation, May 14, 2014, BioMed Research International, Vol. 2014, pp. 1-10. DOI: 10.1155/2014/467465; https://www.hindawi.com/journals/bmri/2014/467465/. ISSN: 2314-6133; PMID: 24949451.
  254. Role of ellagic acid in regulation of apoptosis by modulating novel and atypical PKC in lymphoma bearing mice. Mishra, Sudha and Vinayak, Manjula. [ed.] Thomas A. Rowles. London: BioMed Central Ltd., August 15, 2015, BMC Complementary and Alternative Medicine, Vol. 15, p. 281. DOI: 10.1186/s12906-015-0810-5; https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-015-0810-5. ISSN: 1472-6882; PMID: 26276710.
  255. Ellagic Acid, a Dietary Polyphenol, Selectively Cytotoxic to HSC-2 Oral Carcinoma Cells. Weisburg, Jeffrey H., et al., et al. [ed.] John G. Delinasios. 5, Highlands: The International Institute of Anticancer Research, May 2013, Anticancer Research, Vol. 33, pp. 1829-1836. ISSN: 0250-7005; PMID: 23645727.
  256. The Inhibitory Effect of Ellagic Acid on Cell Growth of Ovarian Carcinoma Cells. Chung, Yuan-Chiang, et al., et al. [ed.] Ken Yasukawa. Article ID 306705, Beloit: Hindawi Publishing Corporation, May 31, 2013, Evidence-Based Complementary and Alternative Medicine, Vol. 2013, pp. 1-12. DOI: 10.1155/2013/306705; https://www.hindawi.com/journals/ecam/2013/306705/. ISSN: 1741-427X; PMID: 23843871.
  257. Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice. Zhao, Min, et al., et al. [ed.] Manfred Schwab. 2, Heidelberg: Elsevier Ireland Ltd., September 1, 2013, Cancer Letters, Vol. 337, pp. 210-217. DOI: 10.1016/j.canlet.2013.05.009; http://www.cancerletters.info/article/S0304-3835(13)00378-9/fulltext. ISSN: 0304-3835; PMID: 23684930.
  258. Ellagic acid, a component of pomegranate fruit juice, suppresses androgen-dependent prostate carcinogenesis via induction of apoptosis. Naiki-Ito, Aya, et al., et al. [ed.] John T. Isaacs. 2, Baltimore: Wiley-Liss, Inc., February 2015, The Prostate, Vol. 75, pp. 151-160. DOI: 10.1002/pros.22900; http://onlinelibrary.wiley.com/doi/10.1002/pros.22900/abstract. ISSN: 0270-4137; PMID: 25284475.
  259. Antioxidant and Apoptosis-inducing Activities of Ellagic Acid. Han, Dong Hoon, Lee, Min Jeon and Kim, Jeong Hee. [ed.] Masahide Kuroki. 5A, Fukuoka: The International Institute of Anticancer Research, September-October 2006, Anticancer Research, Vol. 26, pp. 3601-3606. ISSN: 0250-7005; PMID: 17094489.
  260. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Zhang, Xiang, et al., et al. [ed.] Demetrios A. Spandidos. 1, Athens: Spandidos Publications, July 2016, Oncology Reports, Vol. 36, pp. 271-278. DOI: 10.3892/or.2016.4804; https://www.spandidos-publications.com/or/36/1/271. ISSN: 1021-335X; PMID: 27177074.
  261. Cytotoxic and chemo-sensitizing effects of ferulic acid, from Tamarix aucheriana, on colorectal cancer cells: insights into mechanisms of therapeutic efficacy. Abaza, Mohamed Salah I., et al., et al. [ed.] Thoru Pederson. 1, Amherst: Federation of American Societies for Experimental Biology, April 2016, The FASEB Journal, Vol. 30, p. Supplement 1193.7. ISSN: 0892-6638.
  262. Ferulic acid promoting apoptosis in human osteosarcoma cell lines. Zhang, Xu-dong, Wu, Qiang and Yang, Shu-hua. [ed.] Shaukat Ali Jawaid. 1, Karachi: Professional Medical Publications, Jan-Feb 2017, Pakistan Journal of Medical Sciences, Vol. 33, pp. 127-131. DOI: 10.12669/pjms.331.12066; http://pjms.com.pk/index.php/pjms/article/view/12066. ISSN: 1681-715X; PMID: 28367185.
  263. Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro. Fahrioğlu, Umut, et al., et al. [ed.] A.J. van Wijnen and T. Gojobori. 1, Part 3, Rochester; Shizuoka: Elsevier B.V., January 15, 2016, Gene, Vol. 576, pp. 476-482. DOI: 10.1016/j.gene.2015.10.061; http://www.sciencedirect.com/science/article/pii/S0378111915012810?via%3Dihub. ISSN: 0378-1119; PMID: 26516023.
  264. Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Eroğlu, Canan, et al., et al. [ed.] Torgny Stigbrand. 12, Umeå: Springer Netherlands; International Society of Oncology and BioMarkers (ISOBM), December 2015, Tumor Biology, Vol. 36, pp. 9437-9446. DOI: 10.1007/s13277-015-3689-3; https://link.springer.com/article/10.1007%2Fs13277-015-3689-3. ISSN: 1010-4283; PMID: 26124008.
  265. Anti-proliferative and anti-invasive effects of ferulic acid in TT medullary thyroid cancer cells interacting with URG4/URGCP. Dodurga, Yavuz, et al., et al. [ed.] Torgny Stigbrand. 2, Umeå: Springer Netherlands; International Society of Oncology and BioMarkers (ISOBM), February 2016, Tumor Biology, Vol. 37, pp. 1933-1940. DOI: 10.1007/s13277-015-3984-z; https://link.springer.com/article/10.1007%2Fs13277-015-3984-z. ISSN: 1010-4283; PMID: 26334619.
  266. Folic acid enhances the apoptotic and genotoxic activity of carboplatin in HeLa cell line. Nikoloff, N., et al., et al. [ed.] Jr. Daniel Acosta, Frank A. Barile and Bas J. Blaauboer. Jefferson; Queens; Utrecht: Elsevier Ltd., December 2016, Toxicology in Vitro, Vol. 37, pp. 142-147. DOI: 10.1016/j.tiv.2016.09.019; http://www.sciencedirect.com/science/article/pii/S0887233316301928?via%3Dihub. ISSN: 0887-2333; PMID: 27666654.
  267. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Kotecha, Ritesh, Takami, Akiyoshi and Espinoza, J. Luis. [ed.] Andrei V. Gudkov and Mikhail V. Blagosklonny. 32, Buffalo: Impact Journals, LLC, August 9, 2016, Oncotarget, Vol. 7, pp. 52517-52529. DOI: 10.18632/oncotarget.9593; http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path[]=9593&path[]=30043. eISSN: 1949-2553; PMCID: PMC5239570.
  268. Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Phan, Ai N.H., et al., et al. [ed.] Andrei V. Gudkov and Mikhail V. Blagosklonny. 34, Buffalo: Impact Journals, LLC, August 3, 2016, Oncotarget, Vol. 7, pp. 54702-54713. DOI: 10.18632/oncotarget.10581; http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path[]=10581&path[]=33431. eISSN: 1949-2553; PMID: 27419630.
  269. Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS). Liao, Chung-Chia, et al., et al. [ed.] Lucy Sun Hwang. In Press, Corrected Proof, Taipei: Elsevier Taiwan LLC.; Food and Drug Administration of Taiwan, July 8, 2017, Journal of Food and Drug Analysis. DOI: 10.1016/j.jfda.2017.06.006; http://linkinghub.elsevier.com/retrieve/pii/S1021949817301333. ISSN: 1021-9498.
  270. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Lu, Yong, et al., et al. [ed.] W.H. Gispen and F.P. Nijkamp. 2-3, Utrecht: Elsevier B.V., September 1, 2010, European Journal of Pharmacology, Vol. 641, pp. 102-107. DOI: 10.1016/j.ejphar.2010.05.043; http://www.sciencedirect.com/science/article/pii/S0014299910004930?via%3Dihub. ISSN: 0014-2999; PMCID: PMC3003697.
  271. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells. Chen, Ying-Jung, et al., et al. [ed.] Daniel R. Dietrich. Konstanz: Elsevier Ireland Ltd., May 25, 2016, Chemico-Biological Interactions, Vol. 252, pp. 131-140. DOI: 10.1016/j.cbi.2016.04.025; http://www.sciencedirect.com/science/article/pii/S000927971630148X?via%3Dihub. ISSN: 0009-2797; PMID: 27087131.
  272. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Zhao, Bing and Hu, Mengcai. [ed.] Demetrios A. Spandidos. 6, Athens: Spandidos Publications, December 2013, Oncology Letters, Vol. 6, pp. 1749-1755. DOI: 10.3892/ol.2013.1632; https://www.spandidos-publications.com/10.3892/ol.2013.1632. ISSN: 1792-1074; PMID: 24843386.
  273. The anthocyanin metabolites gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Forester, Sarah C., et al., et al. [ed.] John DiGiovanni. 6, Austin: Wiley-Liss, Inc.: John Wiley & Sons, Inc., June 2014, Molecular Carcinogenesis, Vol. 53, pp. 432-439. DOI: 10.1002/mc.21974; http://onlinelibrary.wiley.com/doi/10.1002/mc.21974/abstract. ISSN: 1098-2744; PMID: 23124926.
  274. Gallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line (C121). Sourani, Zahra, et al., et al. [ed.] Hamid Reza Pakshir and Behrooz Astaneh. 6, Shiraz: Shiraz University, Medical School, November 2016, Iranian Journal of Medical Sciences, Vol. 41, pp. 525-530. ISSN: 0253-0716; PMCID: PMC5106568.
  275. Effect of gallic acid on preneoplastic liver lesions in vivo. Escutia-Gutiérrez, Rebeca, Reyes-Esparza, Jorge and Rodriguez-Fragoso, Lourdes. [ed.] Thoru Pederson. 1, Amherst: Federation of American Societies for Experimental Biology, April 2016, The FASEB Journal, Vol. 30, p. Supplement 1268.7. ISSN: 0892-6638.
  276. Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice. Kawada, M., et al., et al. [ed.] Mels Sluyser. 10, Amsterdam: Lippincott Williams & Wilkins; Wolters Kluwer Health, Inc., November 2001, Anti-Cancer Drugs, Vol. 12, pp. 847-852. ISSN: 0959-4973; PMID: 11707653.
  277. UVA-induced melanogenesis and modulation of glutathione redox system in different melanoma cell lines: The protective effect of gallic acid. Panich, Uraiwan, et al., et al. [ed.] R. Carpentier, D. Ramaiah and A.L.B. Pinheiro. Quebec; Assam; Salvador: Elsevier B.V., March 1, 2012, Journal of Photochemistry and Photobiology B: Biology, Vol. 108, pp. 16-22. DOI: 10.1016/j.jphotobiol.2011.12.004; http://www.sciencedirect.com/science/article/pii/S1011134411002703?via%3Dihub. ISSN: 1011-1344; PMID: 22244344.
  278. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells. Demiroglu-Zergeroglu, Asuman, et al., et al. [ed.] D.M. Townsend. Charleston: Elsevier Masson SAS, December 2016, Biomedicine & Pharmacotherapy, Vol. 84, pp. 2000-2007. DOOI: 10.1016/j.biopha.2016.11.005; http://www.sciencedirect.com/science/article/pii/S0753332216306679?via%3Dihub. ISSN: 0753-3322; PMID: 27847212.
  279. Gallic acid inhibits migration and invasion of SCC 4 human oral cancer cells through actions of NF κB, Ras and matrix metalloproteinase-2 and -9. Kuo, Chao-Lin, et al., et al. [ed.] Demetrios A. Spandidos. 1, Athens: Spandidos Publications, July 2014, Oncology Reports, Vol. 32, pp. 355-361. DOI: 10.3892/or.2014.3209; https://www.spandidos-publications.com/10.3892/or.2014.3209?text=abstract#b5-or-32-01-0355. ISSN: 1021-335X; PMID: 24859325.
  280. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Liao, Ching-Lung, et al., et al. [ed.] A. Wallace Hayes. 5, Andover: Elsevier Inc., May 2012, Food and Chemical Toxicology, Vol. 50, pp. 1734-1740. DOI: 10.1016/j.fct.2012.02.033; http://www.sciencedirect.com/science/article/pii/S0278691512001172?via%3Dihub. ISSN: 0278-6915; PMID: 22387266.
  281. Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells. He, Zhiping, et al., et al. [ed.] Demetrios A. Spandidos. 3, Athens: Spandidos Publications, December 22, 2014, Oncology Letters, Vol. 9, pp. 1444-1450. DOI: 10.3892/ol.2014.2818; https://www.spandidos-publications.com/10.3892/ol.2014.2818. ISSN: 1792-1074; PMCID: PMC4314987.
  282. Gallic Acid Is an Active Component for the Anticarcinogenic Action of Grape Seed Procyanidins in Pancreatic Cancer Cells. Cedó, Lídia, et al., et al. [ed.] Leonard A. Cohen. 1, Valhalla: Taylor and Francis Group, LLC, December 10, 2013, Nutrition and Cancer, Vol. 66, pp. 88-96. DOI: 10.1080/01635581.2014.851714; http://www.tandfonline.com/doi/abs/10.1080/01635581.2014.851714. ISSN: 0163-5581; PMID: 24325191.
  283. Gallic Acid, an Active Constituent of Grape Seed Extract, Exhibits Anti-proliferative, Pro-apoptotic and Anti-tumorigenic Effects Against Prostate Carcinoma Xenograft Growth in Nude Mice. Kaur, Manjinder, et al., et al. [ed.] Peter W. Swaan. 9, Baltimore: Springer US, September 2009, Pharmaceutical Research, Vol. 26, pp. 2133-2140. DOI: 10.1007/s11095-009-9926-y; https://link.springer.com/article/10.1007%2Fs11095-009-9926-y. ISSN: 0724-8741; PMID: 19543955.
  284. Glutathione is key to the synergistic enhancement of doxorubicin and etoposide by polyphenols in leukaemia cell lines. Mahbub, A.A., et al., et al. [ed.] Mauro Piacentini. 6, Rome: Springer Nature: Associazione Differenziamento e Morte Cellulare, December 31, 2015, Cell Death and Disease, Vol. 2015, p. e2028. DOI: 10.1038/cddis.2015.379; http://www.nature.com/cddis/journal/v6/n12/full/cddis2015379a.html. eISSN: 2041-4889; PMID: 26720337.
  285. Blood Iron, Glutathione, and Micronutrient Levels and the Risk of Oral Cancer. Richie Jr., John P.; Kleinman, Wayne; Marina, Patricia; Abraham, Patricia; Wynder, Ernst L.; Muscat, Joshua E. [ed.] Leonard A. Cohen. 4, Valhalla: Taylor and Francis Group, LLC, June 26, 2008, Nutrition and Cancer, Vol. 60, pp. 474-482. DOI: 10.1080/01635580801956477; http://www.tandfonline.com/doi/abs/10.1080/01635580801956477. ISSN: 0163-5581.
  286. Interventions for preventing neuropathy caused by cisplatin and related compounds. Albers, James W., et al., et al. [ed.] Cochrane Neuromuscular Group. 3, s.l.: John Wiley & Sons, Ltd., March 31, 2014, Cochrane Database of Systematic Reviews, Vol. 2014, p. CD005228. DOI: 10.1002/14651858.CD005228.pub4; http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD005228.pub4/abstract. ISSN: 1469-493X; PMID: 24687190.
  287. Effect of carotenoid lutein on N-nitrosodiethylamine-induced hepatocellular carcinoma and its mechanism of action. Sindhu, Edakkadath R., et al., et al. [ed.] Jaak Ph Janssens. 4, Hasselt: Lippincott Williams & Wilkins, July 2013, European Journal of Cancer Prevention, Vol. 22, pp. 320-327. DOI: 10.1097/CEJ.0b013e32835b69ff; http://journals.lww.com/eurjcancerprev/pages/articleviewer.aspx?year=2013&issue=07000&article=00005&type=abstract. ISSN: 0959-8278; PMID: 23187720.
  288. Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: results from a double-blinded, placebo-controlled, crossover study. Grether-Beck, S., et al., et al. [ed.] Alex Anstey. 5, Newport: John Wiley & Sons, Inc.: British Association of Dermatologists, May 2017, British Journal of Dermatology, Vol. 176, pp. 1231-1240. DOI: 10.1111/bjd.15080; http://onlinelibrary.wiley.com/doi/10.1111/bjd.15080/abstract. eISSN: 1365-2133; PMID: 27662341.
  289. Carotenoid Lutein Protects the Kidney against Cisplatin-Induced Acute Renal Failure. Sindhu, Edakkadath Raghavan and Kuttan, Ramadasan. [ed.] Qian Peng. 1, Oslo: Begell House Inc., 2013, Journal of Environmental Pathology, Toxicology and Oncology, Vol. 32, pp. 21-28. DOI: 10.1615/JEnvironPatholToxicolOncol.2013004933; http://www.dl.begellhouse.com/journals/0ff459a57a4c08d0,7a25ac0d01bba37d,67d4a4717564cd7c.html. ISSN: 0731-8898; PMID: 23758149.
  290. California Hass Avocado: Profiling of Carotenoids, Tocopherol, Fatty Acid, and Fat Content during Maturation and from Different Growing Areas. Lu, Qing-Yi, et al., et al. [ed.] James N. Seiber. 21, Davis: American Chemical Society, November 11, 2009, Journal of Agricultural and Food Chemistry, Vol. 57, pp. 10408-10413. DOI: 10.1021/jf901839h; http://pubs.acs.org/doi/abs/10.1021/jf901839h. ISSN: 0021-8561; PMID: 19813713.
  291. A highly polar xanthophyll of 9′-cis-neoxanthin induces apoptosis in HCT116 human colon cancer cells through mitochondrial dysfunction. Terasaki, Masaru, et al., et al. [ed.] Naranjan S. Dhalla. 1-2, Winnipeg: Springer Science+Business Media, June 2007, Molecular and Cellular Biochemistry, Vol. 300, pp. 227-237. DOI: 10.1007/s11010-006-9387-0; https://link.springer.com/article/10.1007%2Fs11010-006-9387-0. ISSN: 0300-8177; PMID: 17186379.
  292. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Kotake-Nara, Eiichi, Asai, Akira and Nagao, Akihiko. [ed.] Manfred Schwab. 1, Heidelberg: Elsevier Ireland Ltd., March 18, 2005, Cancer Letters, Vol. 220, pp. 75-84. DOI: 10.1016/j.canlet.2004.07.048; http://www.cancerletters.info/article/S0304-3835(04)00635-4/fulltext. ISSN: 0304-3835; PMID: 15737690.
  293. Rutin increases the cytotoxicity of temozolomide in glioblastoma via autophagy inhibition. Zhang, Pingde, et al., et al. [ed.] Linda M. Liau. 3, Los Angeles: Springer Science+Business Media, May 2017, Journal of Neuro-Oncology, Vol. 132, pp. 393-400. DOI: 10.1007/s11060-017-2387-y; https://link.springer.com/article/10.1007%2Fs11060-017-2387-y. ISSN: 0167-594X; PMID: 28293765.
  294. Rutin, a Quercetin Glycoside, Restores Chemosensitivity in Human Breast Cancer Cells. Iriti, Marcello, et al., et al. [ed.] Elizabeth M. Williamson, et al., et al. 10, Reading; Naples; Seoul; Charleston: John Wiley & Sons, Ltd., October 2017, Phytotherapy Research, Vol. 31, pp. 1529-1538. DOI: 10.1002/ptr.5878; http://onlinelibrary.wiley.com/doi/10.1002/ptr.5878/abstract. eISSN: 1099-1573; PMID: 28752532.
  295. Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells. Guon, Tae Eun and Chung, Ha Sook. [ed.] Demetrios A. Spandidos. 4, Athens: Spandidos Publications, April 2016, Oncology Letters, Vol. 11, pp. 2463-2470. DOI: 10.3892/ol.2016.4247; https://www.spandidos-publications.com/10.3892/ol.2016.4247. ISSN: 1792-1074; PMID: 27073499.
  296. Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Lin, Jing-Pin, et al., et al. [ed.] Paul B. Tchounwou. 8, Jackson: John Wiley & Sons, Inc., August 2012, Environmental Toxicology, Vol. 27, pp. 480-484. DOI: 10.1002/tox.20662; http://onlinelibrary.wiley.com/doi/10.1002/tox.20662/abstract. eISSN: 1522-7278; PMID: 21254320.
  297. Investigation of cytotoxic, apoptosis-inducing, genotoxic and protective effects of the flavonoid rutin in HTC hepatic cells. Marcarini, Juliana Cristina, et al., et al. [ed.] Ulrich Deschl and Ulrich Mohr. 5, Biberach/Riss; Hannover: Elsevier GmbH, July 2011, Experimental and Toxicologic Pathology, Vol. 63, pp. 459-465. DOI: 10.1016/j.etp.2010.03.005; http://www.sciencedirect.com/science/article/pii/S0940299310000400?via%3Dihub. ISSN: 0940-2993; PMID: 20399630.
  298. Attenuation of genotoxicity, oxidative stress, apoptosis and inflammation by rutin in benzo(a)pyrene exposed lungs of mice: plausible role of NF-κB, TNF-α and Bcl-2. Shahid, Ayaz, et al., et al. [ed.] Edmund M.K. Lui. 1, London, Ontario: Walter de Gruyter GmbH, March 2016, Journal of Complementary and Integrative Medicine, Vol. 13, p. 17. DOI: 10.1515/jcim-2015-0078; https://www.degruyter.com/view/j/jcim.2016.13.issue-1/jcim-2015-0078/jcim-2015-0078.xml. ISSN: 1553-3840.
  299. Anti-Tumor Effect of Rutin on Human Neuroblastoma Cell Lines through Inducing G2/M Cell Cycle Arrest and Promoting Apoptosis. Chen, Hongyan, et al., et al. [ed.] C.-L. Hsieh, B.-Y. Zeng and K. Zhao. Article ID 269165, San Francisco; London; Houston: Hindawi Publishing Corporation, November 7, 2013, The Scientific World Journal, Vol. 2013, pp. 1-8. DOI: 10.1155/2013/269165; https://www.hindawi.com/journals/tswj/2013/269165/. ISSN: 1537-744X; PMID: 24459422.
  300. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats. Ramalingayya, Grandhi Venkata, et al., et al. [ed.] Frank Boeckler and Jim Janetka. 11, Tuebingen; St. Louis: Dove Press Ltd, March 29, 2017, Drug Design, Development and Therapy, Vol. 2017, pp. 1011-1026. DOI: 10.2147/DDDT.S103511; https://www.dovepress.com/rutin-protects-against-neuronal-damage-in-vitro-and-ameliorates-doxoru-peer-reviewed-article-DDDT. ISSN: 1177-8881; PMCID: PMC5384734.
  301. Rutin attenuates gentamicin-induced renal damage by reducing oxidative stress, inflammation, apoptosis, and autophagy in rats. Kandemir, Fatih Mehmet, et al., et al. [ed.] William F. Finn. 3, Chapel Hill: Informa UK Limited: Taylor & Francis Group, April 2015, Renal Failure, Vol. 37, pp. 518-525. DOI: 10.3109/0886022X.2015.1006100; http://www.tandfonline.com/doi/full/10.3109/0886022X.2015.1006100. ISSN: 0886-022X; PMID: 25613739.
  302. Effects of the compounds resveratrol, rutin, quercetin, and quercetin nanoemulsion on oxaliplatin-induced hepatotoxicity and neurotoxicity in mice. Schwingel, Tania E., et al., et al. [ed.] Martin C. Michel. 9, Amsterdam: Springer-Verlag, September 2014, Naunyn-Schmiedeberg's Archives of Pharmacology, Vol. 387, pp. 837-848. DOI: 10.1007/s00210-014-0994-0; https://link.springer.com/article/10.1007%2Fs00210-014-0994-0. ISSN: 0028-1298; PMID: 24908156.
  303. The Study of Apoptotic Effect of p-Coumaric Acid on Breast Cancer Cells MCF-7. Kolahi, M., et al., et al. [ed.] Seyyed Mahmoud Sadr Bafghi. 3, Yazd: Shahid Sadoughi University of Medical Sciences & Health Services, June 2016, Journal of Shahid Sadoughi University of Medical Sciences, Vol. 24, pp. 211-221. ISSN: 2228-5741.
  304. Differential Effects of Ferulic Acid and p-Coumaric Acid on S Phase Distribution and Length of S Phase in the Human Colonic Cell Line Caco-2. Janicke, Birgit, Önning, Gunilla and Oredsson, Stina M. [ed.] James N. Seiber. 17, Davis: American Chemical Society, July 23, 2005, Journal of Agricultural and Food Chemistry, Vol. 53, pp. 6658-6665. DOI: 10.1021/jf050489l; http://pubs.acs.org/doi/abs/10.1021/jf050489l. ISSN: 0021-8561; PMID: 16104781.
  305. Cytotoxic Effect of p-Coumaric Acid on Neuroblastoma, N2a Cell via Generation of Reactive Oxygen Species Leading to Dysfunction of Mitochondria Inducing Apoptosis and Autophagy. Shailasree, S., et al., et al. [ed.] Nicolas G. Bazan. 1, New Orleans: Springer Science+Business Media, LLC, February 2015, Molecular Neurobiology, Vol. 51, pp. 119-130. DOI: 10.1007/s12035-014-8700-2; https://link.springer.com/article/10.1007%2Fs12035-014-8700-2. ISSN: 0893-7648; PMID: 24760364.
  306. Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat's heart. Abdel-Wahab, M.H., et al., et al. [ed.] Emilio Clementi. 5, Milan: Elsevier Ltd., November 2003, Pharmacological Research, Vol. 48, pp. 461-465. DOI: 10.1016/S1043-6618(03)00214-7; http://www.sciencedirect.com/science/article/pii/S1043661803002147?via%3Dihub. ISSN: 1043-6618; PMID: 12967591.
  307. The Protective Effects of p-Coumaric Acid on Acute Liver and Kidney Damages Induced by Cisplatin. Akdemir, Fazile Nur Ekinci, et al., et al. [ed.] Shaker A. Mousa. 2, Rensselaer: MDPI AG, April 28, 2017, Biomedicines, Vol. 5, p. 18. DOI: 10.3390/biomedicines5020018; http://www.mdpi.com/2227-9059/5/2/18. ISSN: 2227-9059; PMID: 28536361.
  308. Novel Nitric Oxide and Superoxide Generation Inhibitors, Persenone A and B, from Avocado Fruit. Kim, Oe Kyung, et al., et al. [ed.] James N. Seiber. 5, Davis: American Chemical Society, May 2000, Journal of Agricultural and Food Chemistry, Vol. 48, pp. 1557-1563. DOI: 10.1021/jf990977r; http://pubs.acs.org/doi/abs/10.1021/jf990977r. ISSN: 0021-8561; PMID: 10820058.
  309. An Avocado Constituent, Persenone A, Suppresses Expression of Inducible Forms of Nitric Oxide Synthase and Cyclooxygenase in Macrophages, and Hydrogen Peroxide Generation in Mouse Skin. Kim, Oe Kyung, et al., et al. [ed.] Kazumitsu Ueda. 11, Kyoto: Japan Society for Bioscience, Biotechnology, and Agrochemistry, November 2000, Bioscience, Biotechnology, and Biochemistry, Vol. 64, pp. 2504-2507. DOI: 10.1271/bbb.64.2504; http://www.tandfonline.com/doi/abs/10.1271/bbb.64.2504. ISSN: 0916-8451; PMID: 11193428.
  310. Complete Response and Fatigue Improvement With the Combined Use of Cyclophosphamide and Quercetin in a Patient With Metastatic Bladder Cancer: A Case Report. Lorenzo, Giuseppe Di, et al., et al. [ed.] David B. Hellmann. 5, Baltimore: Lippincott Williams & Wilkins: Wolters Kluwer Health, Inc., February 8, 2016, Medicine®, Vol. 95, p. e2598. DOI: 10.1097/MD.0000000000002598; http://journals.lww.com/md-journal/pages/articleviewer.aspx?year=2016&issue=02020&article=00022&type=abstract. ISSN: 0025-7974; eISSN: 1536-5964.
  311. Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo. Li, Junyang, et al., et al. [ed.] Mauro Castelli. 35, Rome: BioMed Central, April 2, 2016, Journal of Experimental & Clinical Cancer Research, Vol. 2016, p. 61. DOI: 10.1186/s13046-016-0331-1; https://jeccr.biomedcentral.com/articles/10.1186/s13046-016-0331-1. ISSN: 1756-9966; PMID: 27039073.
  312. Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Srinivasan, Asha, et al., et al. [ed.] John DiGiovanni. 5, Austin: Wiley-Liss, Inc.: John Wiley & Sons, Inc., May 12, 2016, Molecular Carcinogenesis, Vol. 55, pp. 743-756. DOI: 10.1002/mc.22318; http://onlinelibrary.wiley.com/doi/10.1002/mc.22318/abstract. ISSN: 1098-2744; PMID: 25968914.
  313. Priyadarsini, Ramamurthi Vidya and Nagini, Siddavaram. Aberrant Signaling Pathways in Cancer: Modulation by the Dietary Flavonoid, Quercetin. [ed.] Sharmila Shankar and Rakesh K. Srivastava. Nutrition, Diet and Cancer. New York: Springer Science+Business Media B.V., 2012, 1, pp. 1-22. ISBN: 978-94-007-2922-3.
  314. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Zhang, Xiang-An, et al., et al. [ed.] K.K. Mueen Ahmed. 42, Bangalore: Wolters Kluwer - Medknow, Apr-Jun 2015, Pharmacognosy Magazine, Vol. 11, pp. 404-409. DOI: 10.4103/0973-1296.153096; http://www.phcog.com/article.asp?issn=0973-1296;year=2015;volume=11;issue=42;spage=404;epage=409;aulast=Zhang. ISSN: 0973-1296; PMCID: PMC4378141.
  315. Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: in vitro and in vivo studies. Lei, Cing-Syuan, et al., et al. [ed.] Bernhard Hennig. Lexington: Elsevier Inc., January 2018, The Journal of Nutritional Biochemistry, Vol. 51, pp. 105-113. DOI: 10.1016/j.jnutbio.2017.09.011; http://www.sciencedirect.com/science/article/pii/S0955286316306684?via%3Dihub. ISSN: 0955-2863; PMID: 29125991.
  316. Chemoprevention by Quercetin of Oral Squamous Cell Carcinoma by Suppression of the NF-κB Signaling Pathway in DMBA-treated Hamsters. Zhang, Wen, et al., et al. [ed.] John G. Delinasios. 8, Highlands: The International Institute of Anticancer Research, August 2017, Anticancer Research, Vol. 37, pp. 4041-4049. DOI: 10.21873/anticanres.11789; http://ar.iiarjournals.org/content/37/8/4041.abstract. ISSN: 0250-7005; PMID: 28739686.
  317. Quercetin Reverses Rat Liver Preneoplastic Lesions Induced by Chemical Carcinogenesis. Carrasco-Torres, Gabriela, et al., et al. [ed.] Consolato M. Sergi. Article ID 4674918, Edmonton: Hindawi Publishing Corporation, June 27, 2017, Oxidative Medicine and Cellular Longevity, Vol. 2017, pp. 1-8. DOI: 10.1155/2017/4674918; https://www.hindawi.com/journals/omcl/2017/4674918/. ISSN: 1942-0900; PMID: 28740570.
  318. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. Granato, Marisa, et al., et al. [ed.] Bernhard Hennig. Lexington: Elsevier Inc., March 2017, The Journal of Nutritional Biochemistry, Vol. 41, pp. 124-136. DOI: 10.1016/j.jnutbio.2016.12.011; http://linkinghub.elsevier.com/retrieve/pii/S0955286316301784. ISSN: 0955-2863; PMID: 28092744.
  319. A chemical screen for medulloblastoma identifies quercetin as a putative radiosensitizer. Lagerweij, Tonny, et al., et al. [ed.] Andrei V. Gudkov and Mikhail V. Blagosklonny. 24, Buffalo: Impact Journals, LLC, June 14, 2016, Oncotarget, Vol. 7, pp. 35776-35788. DOI: 10.18632/oncotarget.7980; http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path[]=7980&path[]=23805. eISSN: 1949-2553; PMID: 26967057.
  320. Quercetin as an Emerging Anti-Melanoma Agent: A Four-Focus Area Therapeutic Development Strategy. Harris, Zoey, et al., et al. [ed.] Michael Rychlik. 48, Munich: Frontiers Media S.A., October 31, 2016, Frontiers in Nutrition: Food Chemistry, Vol. 3. DOI: 10.3389/fnut.2016.00048; https://www.frontiersin.org/articles/10.3389/fnut.2016.00048/full. eISSN: 2296-861X; PMCID: PMC5086580.
  321. Quercetin enhances apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway. Yi, Liu, et al., et al. [ed.] Yusuke Nakamura. 5, Chicago: John Wiley & Sons, Inc.: Japanese Cancer Association, May 2014, Cancer Science, Vol. 105, pp. 520-527. DOI: 10.1111/cas.12395; http://onlinelibrary.wiley.com/doi/10.1111/cas.12395/abstract. eISSN: 1349-7006; PMID: 24612139.
  322. Quercetin inhibits epithelial-mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial-mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cells. Yu, Dinglai, et al., et al. [ed.] Faris Farassati. 10, Kansas City: Dove Press Ltd, September 258, 2017, OncoTargets and Therapy, Vol. 2017, pp. 4719-4729. DOI: 10.2147/OTT.S136840; https://www.dovepress.com/quercetin-inhibits-epithelial-mesenchymal-transition-decreases-invasiv-peer-reviewed-article-OTT. ISSN: 1178-6930; PMCID: PMC5626388.
  323. Dietary Flavonoids Luteolin and Quercetin Suppressed Cancer Stem Cell Properties and Metastatic Potential of Isolated Prostate Cancer Cells. Pei-HsunTsai, et al., et al. [ed.] John G. Delinasios. 12, Highlands: The International Institute of Anticancer Research, December 2016, Anticancer Research, Vol. 36, pp. 6367-6380. DOI: 10.21873/anticanres.11234; http://ar.iiarjournals.org/content/36/12/6367.abstract. ISSN: 0250-7005; PMID: 27919958.
  324. Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells. Kim, Young-Sang, et al., et al. [ed.] Sung-Woo Cho. 8, Ulsan: Korean Society for Biochemistry and Molecular Biology, August 31, 2014, BMB Reports, Vol. 47, pp. 433-438. DOI: 10.5483/BMBRep.2014.47.8.153; http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=E1MBB7_2014_v47n8_433. eISSN: 1976-670X; PMCID: PMC4206714.
  325. Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Ali, Huma, et al., et al. [ed.] Frank Boeckler and Jim Janetka. 9, Tuebingen; St. Louis: Dove Press Ltd, May 28, 2015, Drug Design, Development and Therapy, Vol. 2015, pp. 2793-2800. DOI: 10.2147/DDDT.S83514; https://www.dovepress.com/isolation-and-evaluation-of-anticancer-efficacy-of-stigmasterol-in-a-m-peer-reviewed-article-DDDT. ISSN: 1177-8881; PMCID: PMC4454197.
  326. Antiproliferative Activity of Violaxanthin Isolated from Bioguided Fractionation of Dunaliella tertiolecta Extracts. Pasquet, Virginie, et al., et al. [ed.] Hartmut Laatsch. 5, Göttingen: MDPI AG, May 11, 2011, Marine Drugs, Vol. 9, pp. 819-831. DOI: 10.3390/md9050819; http://www.mdpi.com/1660-3397/9/5/819. ISSN: 1660-3397; PMID: 21673891.
  327. Vitamin B6 activates p53 and elevates p21 gene expression in cancer cells and the mouse colon. Zhang, Peipei, et al., et al. [ed.] Demetrios A. Spandidos. 5, Athens: Spandidos Publications, May 2014, Oncology Reports, Vol. 31, pp. 2371-2376. DOI: 10.3892/or.2014.3073; https://www.spandidos-publications.com/10.3892/or.2014.3073. ISSN: 1021-335X; PMID: 24626782.
  328. Abstract 1882: Dietary intake of vitamin B6 and choline are inversely associated with pancreatic cancer risk: The Singapore Chinese Health Study. Huang, Joyce Y., et al., et al. [ed.] George C. Prendergast. 15 Suppl, Wynnewood: American Association for Cancer Research, August 2015, Cancer Research, Vol. 75, p. Abstract nr 1882. DOI: 10.1158/1538-7445.AM2015-1882; http://cancerres.aacrjournals.org/content/75/15_Supplement/1882. ISSN: 0008-5472.
  329. Association of vitamin C, vitamin D, vitamin E and risk of bladder cancer: a dose-response meta-analysis. Chen, Fuqiang, et al., et al. [ed.] Suzanne Farley. 5, London: Macmillan Publishers Limited, part of Springer Nature, April 23, 2015, Scientific Reports, Vol. 2015, p. Article number: 9599. DOI: 10.1038/srep09599; http://www.nature.com/articles/srep09599. ISSN: 2045-2322; PMCID: PMC5386108.
  330. Dietary tocopherols inhibit cell proliferation, regulate expression of ERα, PPARγ, and Nrf2, and decrease serum inflammatory markers during the development of mammary hyperplasia. Smolarek, Amanda K., et al., et al. [ed.] John DiGiovanni. 7, Austin: Wiley-Liss, Inc.: John Wiley & Sons, Inc., July 2013, Molecular Carcinogenesis, Vol. 52, pp. 514-525. DOI: 10.1002/mc.21886; http://onlinelibrary.wiley.com/doi/10.1002/mc.21886/abstract. ISSN: 1098-2744; PMCID: PMC3374909.
  331. Vitamin E reverses multidrug resistance in vitro and in vivo. Tang, Jingling, et al., et al. [ed.] Manfred Schwab. 1, Heidelberg: Elsevier Ireland Ltd., August 9, 2013, Cancer Letters, Vol. 336, pp. 149-157. DOI: 10.1016/j.canlet.2013.04.020; http://linkinghub.elsevier.com/retrieve/pii/S0304383513003546. ISSN: 0304-3835; PMCID: PMC3685196.
  332. The Photoreceptor Protector Zeaxanthin Induces Cell Death in Neuroblastoma Cells. Maccarrone, Mauro, et al., et al. [ed.] Masahide Kuroki. 6B, Fukuoka: The International Institute of Anticancer Research, November 1, 2005, Anticancer Research, Vol. 25, pp. 3871-3876. ISSN: 0250-7005; PMID: 16309173.
  333. Dietary Lutein/Zeaxanthin Partially Reduces Photoaging and Photocarcinogenesis in Chronically UVB-Irradiated Skh-1 Hairless Mice. Astner, S., et al., et al. [ed.] J. Ladermann. 6, Berlin: S. Karger AG, August 24, 2007, Skin Pharmacology and Physiology, Vol. 20, pp. 283-291. DOI: 10.1159/000107576; https://www.karger.com/Article/Abstract/107576. ISSN: 1660-5527; PMID: 17717424.
  334. Bioactivity of the phytoconstituents of the leaves of Persea americana. Owolabi, M.A., Coker, H.A.B. and Jaja, S.I. [ed.] Akah Peter Achunike. 12, Nsukka: Academic Journals, June 2010, Journal of Medicinal Plants Research, Vol. 4, pp. 1130-1135. ISSN: 1996-0875.
  335. Antiprotozoal and antimycobacterial activities of Persea americana seeds. Jiménez-Arellanes, Adelina, et al., et al. [ed.] Thomas A. Rowles. 109, London: BioMed Central Ltd., May 16, 2013, BMC Complementary and Alternative Medicine, Vol. 13. DOI: 10.1186/1472-6882-13-109; https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/1472-6882-13-109. ISSN: 1472-6882; PMID: 23680126.
  336. The phytochemical and pharmacological profile of Persea americana Mill. Yasir, Mohammad, Das, Sattwik and Kharya, M.D. [ed.] B.G. Shivananda. 7, Bangalore: Wolters Kluwer - Medknow Publications and Media Pvt. Ltd, January 2010, Pharmacognosy Review, Vol. 4, pp. 77-84. DOI: 10.4103/0973-7847.65332; http://www.phcogrev.com/article.asp?issn=0973-7847;year=2010;volume=4;issue=7;spage=77;epage=84;aulast=Yasir. ISSN: 0973-7847; PMID: 22228945.
  337. Antioxidant Activities and Induction of Apoptosis by Methanol Extracts from Avocado. Lee, Sung-Gyu, et al., et al. [ed.] Kwang-Won Yu. 3, ‎Cheongju City: The Korean Society of Food Science and Nutrition, 2008, Journal of the Korean Society of Food Science and Nutrition, Vol. 37, pp. 269-275. DOI: 10.3746/jkfn.2008.37.3.269; http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=SPOOBG_2008_v37n3_269. ISSN: 1226-3311.
  338. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats. Ortiz-Avila, Omar, et al., et al. [ed.] Mark A. Yorek. Article ID 485759, Iowa City: Hindawi Publishing Corporation, May 18, 2015, Journal of Diabetes Research, Vol. 2015, pp. 1-9. DOI: 10.1155/2015/485759; https://www.hindawi.com/journals/jdr/2015/485759/. ISSN: 2314-6745; PMID: 26180820.
  339. Encephalopathies: the emerging diabetic complications. Sima, Anders A.F. [ed.] Massimo Porta. 4, Newcastle upon Tyne; Turin: Springer-Verlag, December 2010, Acta Diabetologica, Vol. 47, pp. 279-293. DOI: 10.1007/s00592-010-0218-0; https://link.springer.com/article/10.1007%2Fs00592-010-0218-0. ISSN: 0940-5429.
  340. Avocado Consumption Increases Macular Pigment Density in Older Adults: A Randomized, Controlled Trial. Scott, Tammy M., et al., et al. [ed.] Peter Howe and Jonathan Buckley. 9, Callaghan; Adelaide: MDPI AG, September 2017, Nutrients, Vol. 9, p. 919. DOI: 10.3390/nu9090919; http://www.mdpi.com/2072-6643/9/9/919. ISSN: 2072-6643; PMID: 28832514.
  341. The Preventive Effects of Avocado Fruit and Seed Extracts on Cardio-nephrotoxicity Induced by Diethylnitrosamine/2-acetylaminoflurine in Wistar Rats. A. Abdel-Moneim Adel, et al., et al. [ed.] Enas Morgan. 1, Buraydah: Scientific & Academic Publishing, 2017, Basic Sciences of Medicine, Vol. 6, pp. 4-13. ISSN: 2167-7344.
  342. Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria. Ortiz-Avila, Omar, et al., et al. [ed.] Daniel M. Raben. 3, Baltimore: Springer Science+Business Media, June 2013, Journal of Bioenergetics and Biomembranes, Vol. 45, pp. 271-287. DOI: 10.1007/s10863-013-9502-3; https://link.springer.com/article/10.1007%2Fs10863-013-9502-3. ISSN: 0145-479X.
  343. Effect of Avocado (Persea Americana), Cabbage (Brassica Oleracea) and Ginger (Zingiber Officinale) on Rat Liver and Thyroid Injuries Induced by CCl4 (Carbon Tetrachloride). Hamouda, Asmaa F., Sameeh, Manal Y. and Shrourou, Randa M. 4, s.l.: David Publishing Company, 2016, Journal of Pharmacy and Pharmacology, Vol. 2016, pp. 108-118. DOI: 10.17265/2328-2150/2016.03.002; http://www.davidpublisher.org/index.php/Home/Article/index?id=24249.html. ISSN: 2328-2150.
  344. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation. Jesus, D., et al., et al. [ed.] Paul Cos. Article ID 531972, Antwerp: Hindawi Publishing Corporation, October 15, 2015, The Scientific World Journal, Vol. 2015, pp. 1-5. DOI: 10.1155/2015/531972; https://www.hindawi.com/journals/tswj/2015/531972/. ISSN: 1537-744X; PMCID: PMC4641960.
  345. Effect of an avocado oil-enhanced diet (Persea americana) on sucrose-induced insulin resistance in Wistar rats. Toro-Equihua, Mario Del, et al., et al. [ed.] Lucy Sun Hwang. 2, Taipei: Elsevier Taiwan LLC.; Food and Drug Administration of Taiwan, April 2016, Journal of Food and Drug Analysis, Vol. 24, pp. 350-357. DOI: 10.1016/j.jfda.2015.11.005; http://www.jfda-online.com/article/S1021-9498(15)00146-5/fulltext. ISSN: 1021-9498; PMID: 28911589.
  346. Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: results from the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Victor L. Fulgoni III; Dreher, Mark; Davenport, Adrienne J. [ed.] Nehme Gabriel. 1, Leesburg: BioMed Central Ltd, January 2, 2013, Nutrition Journal, Vol. 12. DOI: 10.1186/1475-2891-12-1; https://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-12-1. ISSN: 1475-2891; PMID: 23282226.
  347. Evaluation of Three Medicinal Plant Extracts Against Plasmodium Falciparum and Selected Microganisms. Falodun, Abiodun, et al., et al. [ed.] Clement O. Adewunmi and John A.O. Ojewole. 4, Ile- Ife; Durban: African Networks on Ethnomedicines, June 4, 2014, African Journal of Traditional, Complementary and Alternative Medicines, Vol. 11, pp. 142-146. DOI: 10.4314/ajtcam.v11i4.22; https://www.ajol.info/index.php/ajtcam/article/view/106385. ISSN: 0189-6016; PMID: 25392594.
  348. Effect of Persea americana (avocado) fruit extract on the level of expression of adiponectin and PPAR-γ in rats subjected to experimental hyperlipidemia and obesity. Padmanabhan, Monika and Arumugam, Geetha. [ed.] Edmund M.K. Lui. 2, London, Ontario: Walter de Gruyter GmbH, June 2014, Journal of Complementary and Integrative Medicine, Vol. 11, pp. 107-119. DOI: 10.1515/jcim-2013-0053; https://www.degruyter.com/view/j/jcim.2014.11.issue-2/jcim-2013-0053/jcim-2013-0053.xml. ISSN: 1553-3840; PMID: 24770838.
  349. Vitamin B12 Cream Containing Avocado Oil in the Therapy of Plaque Psoriasis. Stücker, Markus, et al., et al. [ed.] Jean-Hilaire Saurat. 2, Genève: S. Karger AG, Basel, September 2001, Dermatology, Vol. 203, pp. 141-147. DOI: 10.1159/000051729; https://www.karger.com/Article/Abstract/51729. ISSN: 1018-8665; PMID: 11586013.
  350. Effect of Semisolid Formulation of Persea Americana Mill (Avocado) Oil on Wound Healing in Rats. Oliveira, Ana Paula de, et al., et al. [ed.] Gerhard Litscher. Article ID 472382, Graz: Hindawi Publishing Corporation, February 13, 2013, Evidence-Based Complementary and Alternative Medicine, Vol. 2013, pp. 1-8. DOI: 10.1155/2013/472382; https://www.hindawi.com/journals/ecam/2013/472382/. ISSN: 1741-427X; PMID: 23573130.
  351. Effects of Avocado (Persea americana) on Metabolic Syndrome: A Comprehensive Systematic Review. Tabeshpour, Jamshid, Razavi, Bibi Marjan and Hosseinzadeh, Hossein. [ed.] Elizabeth M. Williamson, et al., et al. 6, Reading; Naples; Seoul; Charleston: John Wiley & Sons, Ltd., June 2017, Phytotherapy Research, Vol. 31, pp. 819-837. DOI: 10.1002/ptr.5805; http://onlinelibrary.wiley.com/doi/10.1002/ptr.5805/abstract. eISSN: 1099-1573.
  352. Effect of a Moderate Fat Diet With and Without Avocados on Lipoprotein Particle Number, Size and Subclasses in Overweight and Obese Adults: A Randomized, Controlled Trial. Wang, Li, et al., et al. [ed.] Barry London. 1, Iowa City: American Heart Association, Inc., January 7, 2015, Journal of the American Heart Association, Vol. 4, p. e001355. DOI: 10.1161/JAHA.114.001355; http://jaha.ahajournals.org/content/4/1/e001355. eISSN: 2047-9980; PMID: 25567051.
  353. Management of Osteoarthritis with Avocado/Soybean Unsaponifiables. Christiansen, Blaine A., et al., et al. [ed.] Mats Brittberg. 1, Gothenburg: SAGE Publications, January 2015, Cartilage, Vol. 6, pp. 30-44. DOI: 10.1177/1947603514554992; http://journals.sagepub.com/doi/10.1177/1947603514554992. ISSN: 1947-6035; PMID: 25621100.
  354. Randomised, controlled trial of avocado-soybean unsaponifiable (Piascledine) effect on structure modification in hip osteoarthritis: the ERADIAS study. Maheu, Emmanuel, et al., et al. [ed.] Tore K. Kvien. 2, Oslo: BMJ Publishing Group Ltd & European League Against Rheumatism, February 2014, Annals of the Rheumatic Diseases, Vol. 73, pp. 376-384. DOI: 10.1136/annrheumdis-2012-202485; http://ard.bmj.com/content/73/2/376. ISSN: 0003-4967; PMID: 23345601.
  355. Avocado oil characteristics of Mexican creole genotypes. Espinosa-Alonso, L. Gabriela, et al., et al. [ed.] Lucie Kalvodova. 10, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, October 2017, European Journal of Lipid Science and Technology, Vol. 119, p. 1600406. DOI: 10.1002/ejlt.201600406; http://onlinelibrary.wiley.com/doi/10.1002/ejlt.201600406/abstract. eISSN: 1438-9312.
  356. Carotenoid Absorption from Salad and Salsa by Humans Is Enhanced by the Addition of Avocado or Avocado Oil. Unlu, Nuray Z., et al., et al. [ed.] A. Catharine Ross. 3, University Park: American Society for Nutrition, March 1, 2005, The Journal of Nutrition, Vol. 135, pp. 431-436. ISSN: 0022-3166; PMID: 15735074.
  357. Avocado Consumption Enhances Human Postprandial Provitamin A Absorption and Conversion from a Novel High-β-Carotene Tomato Sauce and from Carrots. Kopec, Rachel E., et al., et al. [ed.] Teresa A. Davis. 8, Houston: American Society for Nutrition, August 1, 2014, The Journal of Nutrition, Vol. 144, pp. 1158-1166. DOI: 10.3945/jn.113.187674; http://jn.nutrition.org/content/144/8/1158. ISSN: 0022-3166; PMCID: PMC4093981.
  358. In vitro Evaluation of Genotoxicity of Avocado (Persea americana) Fruit and Leaf Extracts in Human Peripheral Lymphocytes. Kulkarni, Paresh, Paul, Rajkumar and Ganesh, N. [ed.] Yin-Tak Woo. 3, Springfield: Taylor & Francis Group, LLC, July 2010, Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, Vol. 28, pp. 172-187. DOI: 10.1080/10590501.2010.504979; http://www.tandfonline.com/doi/abs/10.1080/10590501.2010.504979. ISSN: 1059-0501; PMID: 20859823.
Disclaimer: This website is not intended to replace professional consultation, diagnosis, or treatment by a licensed physician. If you require any medical related advice, contact your physician promptly. Information presented on this website is exclusively of a general reference nature. Do not disregard medical advice or delay treatment as a result of accessing information at this site.